Neurotransmitter transporters determine the intensity and duration of signal transduction by controlling the rapid removal of transmitter molecules from the synaptic cleft. The importance of their function is further reflected by the medical and social implications of compounds that inhibit their activity such as the antidepressants and cocaine. Molecular characterization of these transporters has revealed that they are members of a large family of membrane proteins with 12 putative transmembrane domains. However, little information exists as to whether discrete domains of these proteins mediate the various defined functions of these transporters. In this study, we constructed a series of chimeras between two structurally related but pharmacologically distinct transporters, the dopamine and norepinephrine transporters. The properties of these chimeric transporters suggest that distinct regions of these molecules determine these individual functions. Regions from the amino-terminal through the first five transmembrane domains are likely to be involved in the uptake mechanisms and ionic dependence. Regions within transmembrane domains 6-8 determine tricyclic antidepressant binding and cocaine interactions, whereas the carboxyl-terminal region encompassing transmembrane domain 9 through the COOH-terminal tail appears to be responsible for the stereoselectivity and high affinity for substrates. The dissociation of the substrate uptake and cocaine binding properties of these transporters further raises the possibility that antagonists of cocaine action devoid of uptake blockade activity might be developed for the clinical management of cocaine addiction.

Download full-text PDF

Source

Publication Analysis

Top Keywords

transmembrane domains
12
discrete domains
8
tricyclic antidepressant
8
transporters
8
cocaine
6
domains
5
delineation discrete
4
domains substrate
4
substrate cocaine
4
cocaine tricyclic
4

Similar Publications

Retromer mediates retrograde transport of protein cargos from endosomes to the trans-Golgi network (TGN). γ-secretase is a protease that cleaves the transmembrane domain of its target proteins. Although retromer can form a stable complex with γ-secretase, the functional consequences of this interaction are not known.

View Article and Find Full Text PDF

Polymyxins are last-resort antimicrobial peptides administered clinically against multi-drug resistant bacteria, specifically in the case of Gram-negative species. However, an increasing number of these pathogens employ a defense strategy that involves a relay of enzymes encoded by the pmrE (ugd) loci and the arnBCDTEF operon. The pathway modifies the lipid-A component of the outer membrane (OM) lipopolysaccharide (LPS) by adding a 4-amino-4-deoxy-l-arabinose (L-Ara4N) headgroup, which renders polymyxins ineffective.

View Article and Find Full Text PDF

Chimeric Antigen Receptor (CAR) T cell therapy has revolutionized cancer treatment and is now being explored for other diseases, such as autoimmune disorders. While the tumor microenvironment (TME) in cancer is often immunosuppressive, in autoimmune diseases, the environment is typically inflammatory. Both environments can negatively impact CAR T cell survival: the former through direct suppression, hypoxia, and nutrient deprivation, and the latter through chronic T cell receptor (TCR) engagement, risking exhaustion.

View Article and Find Full Text PDF

Sarcoplasmic/endoplasmic reticulum Ca-ATPase1 (SERCA1) is responsible for the clearance of cytosolic Ca in skeletal muscle. Due to its vital importance in regulating Ca homeostasis, the regulation of SERCA1 has been intensively studied. Small ankyrin 1 (sAnk1, Ank1.

View Article and Find Full Text PDF

Antibody Responses and the Vaccine Efficacy of Recombinant Glycosyltransferase and Nicastrin Against .

Pathogens

January 2025

National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.

Schistosomiasis is a neglected tropical disease and the second most common parasitic disease after malaria. While praziquantel remains the primary treatment, concerns about drug resistance highlight the urgent need for new drugs and effective vaccines to achieve sustainable control. Previous proteomic studies from our group revealed that the expression of glycosyltransferase and nicastrin as proteins was higher in single-sex males than mated males, suggesting their critical roles in parasite reproduction and their potential as vaccine candidates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!