The 4 K 245-GHz/8.7-T electron paramagnetic resonance spectrum of the stable tyrosyl radical in photosystem II, known as TyrD., has been measured. Illumination at 200 K enhances the signal intensity of TyrD. by a factor of > 40 compared to the signal obtained from dark-adapted samples. This signal enhancement and the unusual line shape of the TyrD. resonance result from the magnetic dipolar coupling of the radical to the manganese cluster involved in oxygen evolution. The relative angular orientation of the manganese cluster with respect to TyrD. has been determined from line-shape analysis. The resonance arising from TyrD. in Tris-washed manganese-free photosystem II sample is also distorted. This effect probably originates from the influence of the nonheme iron on the spin relaxation of the tyrosyl radical. The relative angular orientation of the nonheme iron has also been determined. Oriented samples were used to determine the angular orientation of TyrD. with respect to the membrane plane. Combining angular data with published distances, we have constructed a three-dimensional picture of the relative positions of TyrD., the manganese cluster, and the nonheme iron. The data suggest a more symmetrical placement of the manganese relative to TyrD. and TyrZ, the tyrosine involved in electron transfer, than is usually assumed in current models of photosystem II.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC43974 | PMC |
http://dx.doi.org/10.1073/pnas.91.12.5262 | DOI Listing |
Unlabelled: Accurate localization of white matter pathways using diffusion MRI is critical to investigating brain connectivity, but the accuracy of current methods is not thoroughly understood. A fruitful approach to validating accuracy is to consider microscopy data that have been co-registered with MRI of post mortem samples. In this setting, structure tensor analysis is a standard approach to computing local orientations for validation.
View Article and Find Full Text PDFOphthalmic Physiol Opt
January 2025
Robert O Curle Ophthalmology Suite, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK.
Purpose: To determine whether imaging features derived from fundus photographs contain 3D eye shape information beyond that available from spherical equivalent refraction (SER).
Methods: We analysed 99 eyes of 68 normal adults in the UK Biobank. An ellipsoid was fitted to the entire volume of each posterior eye (vitreous chamber without the lens)-segmented from magnetic resonance imaging of the brain.
Acta Biomater
January 2025
Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, United Kingdom.
The quantitative characterization of the structure of biomineral surfaces is needed for guiding regenerative strategies. Current techniques are compromised by a requirement for extensive sample preparation, limited length-scales, or the inability to repeatedly measure the same surface over time and monitor structural changes. We aim to address these deficiencies by developing Calcium (Ca) K-edge Polarisation Induced Contrast X-ray Fluorescence (PIC-XRF) to quantify hydroxyapatite (HAp) crystallite structural arrangements in high and low textured surfaces.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Physics, Washington State University, Pullman, WA 99163, USA.
This work aims to determine the mechanism of the photomechanical response of poly(Methyl methacrylate) polymer doped with the photo-isomerizable dye Disperse Red 1 using the non-isomerizable dye Disperse Orange 11 as a control to isolate photoisomerization. Samples are free-standing thin films with thickness that is small compared with the optical skin depth to assure uniform illumination and photomechanical response throughout their volume, which differentiates these studies from most others. Polarization-dependent measurements of the photomechanical stress response are used to deconvolute the contributions of angular hole burning, molecular reorientation and photothermal heating.
View Article and Find Full Text PDFCurr Med Imaging
January 2025
Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong An Road, Xicheng District, Beijing 100050, China.
Background: The neuroanatomical basis of white matter fiber tracts in gait impairments in individuals suffering from Parkinson's Disease (PD) is unclear.
Methods: Twenty-four individuals living with PD and 29 Healthy Controls (HCs) were included. For each participant, two-shell High Angular Resolution Diffusion Imaging (HARDI) and high-resolution 3D structural images were acquired using the 3T MRI.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!