Insulin receptor mutation at tyrosines 1162 and 1163 alters both receptor serine phosphorylation and desensitization.

Metabolism

INSERM-U181, Laboratoire de Biochimie-Biologie Cellulaire, Faculté de Médecine Saint-Antoine, Paris, France.

Published: June 1994

Chinese hamster ovary (CHO) cells expressing human insulin receptor (hIR) of the wild-type (CHO R) or hIR mutated at tyrosines 1162 and 1163 (CHO Y2) were compared for agonist-induced receptor phosphorylation of serine/threonine residues and receptor desensitization. Relative to CHO R cells, CHO Y2 cells exhibited a marked decrease in their response to insulin and 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) for hIR phosphorylation on serine residues. Moreover, the tyr1162,1163 mutant hIR could not be normally phosphorylated by purified protein kinase C (PKC) in vitro. Finally, in contrast to CHO R cells, CHO Y2 cells were refractory to PMA-induced IR desensitization for subsequent activation by insulin of exogenous tyrosine kinase and glycogen synthesis. These results strongly suggest that the replacement of tyrosines 1162 and 1163 by phenylalanine residues changes the IR beta-subunit conformation and thus impedes phosphorylation of the IR at crucial serine residues and prevents PMA-induced desensitization. This supports the hypothesis that IR serine phosphorylation and desensitization are related.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0026-0495(94)90127-9DOI Listing

Publication Analysis

Top Keywords

cho cells
20
tyrosines 1162
12
1162 1163
12
insulin receptor
8
serine phosphorylation
8
phosphorylation desensitization
8
cells cho
8
serine residues
8
pma-induced desensitization
8
cho
7

Similar Publications

Diabetes is an incurable, chronic disease that can lead to many complications, including angiopathy, peripheral neuropathy, and erectile dysfunction (ED). The angiopoietin-Tie2 signaling pathway plays a critical role in blood vessel development, formation, remodeling, and peripheral nerve regeneration. Therefore, strategies for activating the Tie2 signaling pathway have been developed as potential therapies for neurovascular diseases.

View Article and Find Full Text PDF

Background/aim: This study aimed to investigate the safety and efficacy of deferoxamine (DFO) pretreated feline adipose tissue derived mesenchymal stem cells (fATMSCs) for the treatment of inflammatory disorders.

Materials And Methods: fATMSCs were isolated from feline adipose tissue and characterized using flow cytometry for surface marker expression and differentiation assays for adipogenic, osteogenic, and chondrogenic lineages. Different concentrations of DFO were used to evaluate its impact on fATMSC activity.

View Article and Find Full Text PDF

Background/aim: Kisspeptin has multifaceted roles in both normal and pathological conditions. Although lung cancer is a leading cause of cancer worldwide, the role of kisspeptin in lung cancer remains poorly understood. Thus, this study aimed to investigate the effects of kisspeptin on lung cancer.

View Article and Find Full Text PDF

The CHO VRC01 cell line produces an anti-HIV IgG1 monoclonal antibody containing N-linked glycans on both the Fab (variable) and Fc (constant) regions. Site-specific glycan analysis was used to measure the complex effects of cell culture process conditions on Fab and Fc glycosylation. Experimental data revealed major differences in glycan fractions across the two sites.

View Article and Find Full Text PDF

ReV as a Novel S. cerevisiae-Derived Drug Carrier to Enhance Anticancer Therapy through Daunorubicin Delivery.

Appl Biochem Biotechnol

December 2024

Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-Daero, Deokjin-Gu Jeonju, Jeonbuk, 54896, South Korea.

This study explores the potential of vacuoles derived from Saccharomyces cerevisiae (S. cerevisiae) as a novel form of drug carrier, specifically focusing on their application in enhancing the delivery of the chemotherapeutic agent Daunorubicin (DNR). We isolated and reassembled these vacuoles, referred to as Reassembled Vacuoles (ReV), aiming to overcome the challenges of drug degradation caused by hydrolytic enzymes within traditional vacuoles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!