To establish design parameters for a transesophageal ultrasonic probe to image the left ventricle (LV) in three dimensions, the geometrical relationship between the esophagus and the heart was studied in computed tomographic sections of ten humans. Points describing the esophageal centerpoint and the left-ventricular endocardium were digitized. Algorithms were developed to determine from any esophageal viewpoint the ranges of motion required to cover the LV with four modes of scanning; transverse oblique, longitudinal oblique, rotary and linear. Longitudinal oblique scanning was the only single-degree-of-freedom method that allowed complete imaging of the LV in all patients. However, for both conventional and three-dimensional LV imaging, the most promising probe design appears to be a rotary scanning probe with an added degree of freedom to tilt the axis of rotation +/- 29 degrees away from an axis perpendicular to the local esophageal axis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0301-5629(94)90012-4 | DOI Listing |
J Infect
January 2025
Research Your Health, 6020 West Parker Road, Suite 430, Plano, Texas, 75093, USA.
Objectives: Safety and immunogenicity assessment of updated monovalent and bivalent SARS-CoV-2 vaccines in adolescents.
Methods: This phase 3, double-blinded study randomised 12-<18-year-old participants, who received ≥2 prior doses of an approved/authorised mRNA-based COVID-19 vaccine, 1:1 to receive NVX-CoV2601 (XBB.1.
J Chem Phys
January 2025
Department of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA.
Identifying informative low-dimensional features that characterize dynamics in molecular simulations remains a challenge, often requiring extensive manual tuning and system-specific knowledge. Here, we introduce geom2vec, in which pretrained graph neural networks (GNNs) are used as universal geometric featurizers. By pretraining equivariant GNNs on a large dataset of molecular conformations with a self-supervised denoising objective, we obtain transferable structural representations that are useful for learning conformational dynamics without further fine-tuning.
View Article and Find Full Text PDFCardiovasc Eng Technol
January 2025
Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 1-3, Budapest, 1111, Hungary.
Purpose: The initiation of intracranial aneurysms has long been studied, mainly by the evaluation of the wall shear stress field. However, the debate about the emergence of hemodynamic stimuli still persists. This paper builds on our previous hypothesis that secondary flows play an important role in the formation cascade by examining the relationship between flow physics and vessel geometry.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Beijing Institute of Technology, School of Chemistry and Chemical Engineering, 8th Liangxiang East Road, Room 829, Eco-Industrial Building, Beijing, 102488, Beijing, CHINA.
The structural isomerism of atomically precise nanoclusters provides a preeminent theoretical model to investigate the structure-property relationships. Herein, we synthesized three bowl-like polyoxometalate (POM)-encapsulated Ag nanoclusters (denoted as {Ag14(Sb3W30)2}-1, {Ag14(Sb3W30)2}-1a, and {Ag14(Sb3W30)2}-2) via a facile one-pot solvothermal approach. Among them, for the first time, an unprecedented isomeric {Ag14}10+ nanoclusters are obtained in polyoxoanions {Ag14(Sb3W30)2}-1 and {Ag14(Sb3W30)2}-2, which should be probably induced by the different distribution of coordinating O atoms in two isomeric bowl-like {Sb3W30} ligands.
View Article and Find Full Text PDFComput Biol Med
January 2025
SCOPIA Research Group, University of the Balearic Islands, Dpt. of Mathematics and Computer Science, Crta. Valldemossa, Km 7.5, Palma, E-07122, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, E-07122, Spain; Laboratory for Artificial Intelligence Applications at UIB (LAIA@UIB), Palma, E-07122, Spain; Artificial Intelligence Research Institute of the Balearic Islands (IAIB), Palma, E-07122, Spain. Electronic address:
Sickle cell disease causes erythrocytes to become sickle-shaped, affecting their movement in the bloodstream and reducing oxygen delivery. It has a high global prevalence and places a significant burden on healthcare systems, especially in resource-limited regions. Automated classification of sickle cells in blood images is crucial, allowing the specialist to reduce the effort required and avoid errors when quantifying the deformed cells and assessing the severity of a crisis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!