We have mapped the regions in the Drosophila melanogaster tissue-specific transcription factor Grainyhead that are required for DNA binding and dimerization. These functional domains correspond to regions conserved between Grainyhead and the vertebrate transcription factor CP2, which we show has similar activities. The identified DNA-binding domain is large (263 amino acids) but contains a smaller core that is able to interact with DNA at approximately 400-fold lower affinity. The major dimerization domain is located in a separate region of the protein and is required to stabilize the interactions with DNA. Our data also suggest that Grainyhead activity can be modulated by an N-terminal inhibitory domain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC358768 | PMC |
http://dx.doi.org/10.1128/mcb.14.6.4020-4031.1994 | DOI Listing |
J Pathol
January 2025
Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, PR China.
Aberrant expression of grainyhead-like transcription factor 3 (GRHL3) has been extensively reported in the development and progression of several squamous cell carcinomas, such as cutaneous, head and neck, and esophageal squamous cell carcinoma. However, the clinical significance and biological roles of GRHL3 in lung squamous cell (LUSC) carcinoma are largely unclear. Herein, we report that GRHL3 was significantly upregulated in lung squamous epithelium of LUSC tissues, bronchiole, and bronchus.
View Article and Find Full Text PDFBiomark Res
January 2025
Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
Background: Although immunotherapy has achieved great progress in advanced triple-negative breast cancer (TNBC), there are still numerous patients who do not benefit from immunotherapy. Therefore, identification of the key molecule that induces immune escape and clarification of its specific mechanism in TNBC are urgently needed.
Methods: In this research, single cell sequencing and bulk sequencing were conducted for biomarker screening.
EMBO J
January 2025
School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
Two APOBEC DNA cytosine deaminase enzymes, APOBEC3A and APOBEC3B, generate somatic mutations in cancer, thereby driving tumour development and drug resistance. Here, we used single-cell RNA sequencing to study APOBEC3A and APOBEC3B expression in healthy and malignant mucosal epithelia, validating key observations with immunohistochemistry, spatial transcriptomics and functional experiments. Whereas APOBEC3B is expressed in keratinocytes entering mitosis, we show that APOBEC3A expression is confined largely to terminally differentiating cells and requires grainyhead-like transcription factor 3 (GRHL3).
View Article and Find Full Text PDFInt J Mol Med
January 2025
Department of Genetics, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China.
Long interspersed nuclear element‑1 (L1) is highly expressed in the early embryos of humans, rodents and fish. To investigate the molecular mechanisms underlying high expression of L1 during early embryonic development, a C1‑open reading frame (ORF)2 vector was constructed in which ORF2 of human L1 (L1‑ORF2) was inserted into a pEGFP‑C1 plasmid. C1‑ORF2 vector was injected into early zebrafish embryos (EZEs) to observe expression of EGFP reporter protein by fluorescence microscopy.
View Article and Find Full Text PDFHeliyon
September 2024
Department of Medicine (Alfred Hospital), School of Translational Medicine, Monash University, 99 Commercial Rd, Melbourne, VIC, 3004, Australia.
Neural tube closure in vertebrates is achieved through a highly dynamic and coordinated series of morphogenic events involving neuroepithelium, surface ectoderm, and neural plate border. Failure of this process in the caudal region causes spina bifida. Grainyhead-like 3 (GRHL3) is an indispensable transcription factor for neural tube closure as constitutive inactivation of the gene in mice leads to fully penetrant spina bifida.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!