Recovery of lysozyme from scallop waste.

Prep Biochem

Norwegian Institute of Fisheries and Aquaculture, Centre of Marine Biotechnology, Tromsø.

Published: February 1994

A crude lysozyme preparation was recovered in waste from the scallop processing industry. Lysozyme was then purified 229-fold in preparative scale by chromatography on S Sepharose and Blue Sepharose. Further purification on Sephacryl S-200 resulted in a lysozyme preparation with a specific activity of 64,000 units/mg protein. The apparent molecular mass of the partially purified lysozyme was 10 kDa as judged by gel filtration. Optimum pH for lysis of Micrococus luteus under the present conditions was 5.2. The enzyme was very active at low temperatures. At 4 degrees C the scallop viscera lysozyme exhibits about 55% of the activity measured at 37 degrees C.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10826069408010083DOI Listing

Publication Analysis

Top Keywords

lysozyme preparation
8
lysozyme
5
recovery lysozyme
4
lysozyme scallop
4
scallop waste
4
waste crude
4
crude lysozyme
4
preparation recovered
4
recovered waste
4
waste scallop
4

Similar Publications

Preparation of halloysite nanotube-based monolithic column for small molecules and protein analysis.

J Chromatogr B Analyt Technol Biomed Life Sci

January 2025

College of Life Science, Hebei Agricultural University, Baoding, Hebei 071001, China; Hebei Forage Microbial Technology Innovation Center, Baoding, Hebei 071001, China; Hebei Agriculture Waste Resource Utilization Engineering Research Center, Baoding, Hebei 071001, China. Electronic address:

s: This study aimed to prepare a new separation medium, silane coupling agent KH570- modified halloysite nanotube (MPS-HNT) monolithic column, with excellent separation performance for small molecular compounds and macromolecular proteins. This was prepared using the principle of redox polymerization with modified HNTs as monomers. The optimal monomer proportion was obtained by optimizing the ratio of monomer, cross-linker, and pore-forming agent, which was evaluated using scanning electron microscopy, nitrogen adsorption, and mercury intrusion.

View Article and Find Full Text PDF

The reduction in hyaluronic acid concentration and viscosity in the synovial fluid of patients struggling with osteoarthritis increases the abrasion of articular cartilage. The aim of this study was to design a semi-IPN hydrogel based on genipin-crosslinked carboxymethyl chitosan (CMCh) and glycerol to achieve long-term release of hyaluronic acid. The results showed that hydrogel comprising CMCh (3 % wt.

View Article and Find Full Text PDF

A phase-transited lysozyme coating doped with strontium on titanium surface for bone repairing via enhanced osteogenesis and immunomodulatory.

Front Cell Dev Biol

January 2025

Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.

Introduction: Titanium is currently recognized as an excellent orthopedic implant material, but it often leads to poor osseointegration of the implant, and is prone to aseptic loosening leading to implant failure. Therefore, biofunctionalization of titanium surfaces is needed to enhance their osseointegration and immunomodulation properties to reduce the risk of implant loosening. We concluded that the utilization of PTL-Sr is a direct and effective method for the fabrication of multifunctional implants.

View Article and Find Full Text PDF

Dental caries is a common disease resulting from tooth demineralization caused by bacterial plaque. Probiotics have shown great potential against caries by regulating the balance of oral flora. However, obstacles such as poor colonization and lysozyme sensitivity in oral cavity hinder their further application.

View Article and Find Full Text PDF

The low stability of water-in-oil-in-water (W/O/W) double emulsions greatly limits their applications. Therefore, in this study, W/O/W Pickering double emulsions (PDEs) were prepared by a two-step emulsification method using polyglycerol polyricinoleate (PGPR) and xanthan gum/lysozyme nanoparticles (XG/Ly NPs) as lipophilic and hydrophilic emulsifiers, respectively. The regulation mechanism of the performance of PDEs by XG/Ly NPs was investigated, and the ability of the system to co-encapsulate epigallocatechin gallate (EGCG) and β-carotene was evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!