A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modeling the transient response to volume perturbations in the beating heart by the difference equation method. | LitMetric

AI Article Synopsis

  • The study employs discrete theoretical methods and experimental approaches to analyze the heart's response to volume changes and sustained mechanical alternans (SMA).
  • In the first stage, the relationship between stroke volume (SV) and end-diastolic volume characterizes the cardiac response, showing that the response varies based on gamma’s value.
  • The second stage incorporates the impacts of stroke volume changes on aortic pressure, yielding different response types influenced by the afterload factor lambda 1 and gamma.
  • In the final stage, experimental results in dogs suggest that SMA is likely not caused by variations in preload and afterload, as responses align with the theoretical model predictions.

Article Abstract

Discrete theoretical methods, compatible with the discrete features of the beating heart, are used together with experimental study to attain a quantitative understanding of the transient response to a volume perturbation and of sustained mechanical alternans (SMA) in the beating heart. This is done in three stages. In stage A, a first-order difference equation describes the stroke volume (SV) response due to the Frank-Starling mechanism. It is shown that the value of gamma, the slope of the SV-end-diastolic volume curve, determines the type of response obtained because of a perturbation: 1) nonoscillatory decay for gamma < 1,2) oscillatory decay for 1 < gamma < 2, 3) SMA for gamma = 2, and 4) chaotic response for gamma > 2. In stage B, when the effect of each SV change on the successive end-diastolic aortic pressure (P) is considered, SV response to a perturbation is determined by a second-order difference equation. The solution of this equation shows that the response is determined by gamma and by the afterload factor lambda 1 = alpha 1.delta, where alpha 1 = delta Pj + 1/delta SVj and delta = delta SVj + 1/delta Pj + 1. The responses are a nonoscillatory decay for lambda 1 < 1 - gamma (type 1), oscillatory decay for 1 - (gamma/2) > lambda 1 > 1 - gamma (type 2), SMA for lambda 1 = 1 - gamma/2 (type 3), and 2:1 electrical-mechanical response for lambda 1 > 1 - gamma/2 (type 4). In stage C, a single volume perturbation, delta SVj, will directly affect not only Pj + 1 but also the subsequent values of P. Filling volume perturbations performed with a mitral valve occluder in eight anesthetized dogs led only to type 1 and 2 responses. The responses predicted by the model (using the experimental values of gamma and lambda 1) in each of the eight open-chest dogs are compatible with the experimental responses, suggesting that it is unlikely that SMA is initiated and maintained by variations in preload and afterload.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.1994.266.4.H1657DOI Listing

Publication Analysis

Top Keywords

beating heart
12
difference equation
12
gamma
9
response
8
transient response
8
response volume
8
volume perturbations
8
volume perturbation
8
response perturbation
8
nonoscillatory decay
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!