Although the skeletal muscles of different vertebrate species have been assumed to be generally similar, recent X-ray diffraction and mechanical studies have demonstrated differences in the responses of these muscles to changes in physiological conditions. X-ray diffraction studies have indicated that lowering the temperature and lowering ionic strength may affect the crossbridge arrangement of rabbit thick filaments. Similar X-ray diffraction studies on the structural effects of lowering ionic strength in frog and fish muscles are less clear in interpretation, while lowering the temperature appears to have little effect in these muscles. In the present study we have compared the effects of lowering the temperature or ionic strength on the crossbridge order of isolated rabbit and fish thick filaments as observed in the electron microscope. In agreement with the X-ray results, rabbit filaments show a distinct loss of crossbridge order when stained at 4 degrees C compared to 25 degrees C, whereas fish thick filaments appear similar at both temperatures. Rabbit thick filaments, when diluted to one-fourth of the normal ionic strength (while maintaining constant EGTA and ATP concentration), showed a strong tendency to bind to actin filaments, while similarly-treated fish filaments showed little tendency to aggregate or become disordered. These results appear to support the X-ray diffraction results of other investigators, and the idea that effects of ionic strength or temperature on muscle may vary with species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00123834 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!