Two hundred sixty-two rotational and F1 sows were mated to Duroc, Yorkshire, or Landrace boars to study performance differences between equivalent three-breed rotational and three-breed terminal crossbreeding systems. Matings were made to maximize heterosis. The sows were fed either 1.8 or 2.7 kg/d (2.25 and 3.15 kg/d in winter months) during gestation. These matings produced 934 litters to determine the effect of crossbreeding system, breed composition within crossbreeding system, and gestation feeding level on litter sizes and weights, sow weight and backfat thickness at weaning, daily feed intake of the sow during lactation, interval from weaning to estrus, and farrowing rate. Feeding level during gestation was not an important source of variation for any of the traits except litter birth weight and daily feed intake of the sow during lactation. Litter size marketed was .37 pigs/litter greater (P < .05) for the terminal-cross sows than those sows from the rotational crossbreeding system. Litter weights at birth and 56 d were .8 and 6.5 kg heavier (P < .02, .03), respectively, for the terminal crossbreeding system than for the rotational crossbreeding system. Sow weight and backfat thickness at weaning, daily feed intake during lactation, and farrowing rate were not affected (P > .10) by crossbreeding system. Weaning-to-estrus interval was 1.3 d shorter (P < .03) for sows in the terminal crossbreeding system than for those in the rotational system.(ABSTRACT TRUNCATED AT 250 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.2527/1994.723584xDOI Listing

Publication Analysis

Top Keywords

crossbreeding system
28
rotational crossbreeding
12
terminal crossbreeding
12
daily feed
12
feed intake
12
crossbreeding
9
crossbreeding systems
8
feeding level
8
sow weight
8
weight backfat
8

Similar Publications

A Lateral Line Specific Mucin Involved in Cupula Growth and Vibration Detection in Zebrafish.

Int J Mol Sci

January 2025

Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University, Shanghai 201306, China.

The lateral line system in fish is crucial for detecting water flow, which facilitates various behaviors such as prey detection, predator avoidance, and rheotaxis. The cupula, a gelatinous structure overlaying the hair cells in neuromasts, plays a key role in transmitting mechanical stimuli to hair cells. However, the molecular composition of the cupula matrix remains poorly understood.

View Article and Find Full Text PDF

Background: The BBR-BPC gene family is a relatively conservative group of transcription factors, playing a key role in plant morphogenesis, organ development, and responses to abiotic stress. L. (), commonly known as oilseed rape, is an allopolyploid plant formed by the hybridization and polyploidization of L.

View Article and Find Full Text PDF

Single Nucleotide Polymorphism Highlighted via Heterogeneous Light-Induced Dissipative Structure.

ACS Sens

January 2025

Research Institute for Light-induced Acceleration System (RILACS), Osaka Metropolitan University, 1-2 Gakuencho, Nakaku, Sakai, Osaka 599-8570, Japan.

The unique characteristics of biological structures depend on the behavior of DNA sequences confined in a microscale cell under environmental fluctuations and dissipation. Here, we report a prominent difference in fluorescence from dye-modified single-stranded DNA in a light-induced assembly of DNA-functionalized heterogeneous probe particles in a microwell of several microliters in volume. Strong optical forces from the Mie scattering of microparticles accelerated hybridization, and the photothermal effect from the localized surface plasmons in gold nanoparticles enhanced specificity to reduce the fluorescence intensity of dye-modified DNA to a few %, even in a one-base mismatched sequence, enabling us to clearly highlight the single nucleotide polymorphisms in DNA.

View Article and Find Full Text PDF

Background: Hybridization between evolutionary lineages has profound impacts on the fitness and ecology of hybrid progeny. In extreme cases, the effects of hybridization can transcend ecological timescales by introducing trait novelty upon which evolution can act. Indeed, hybridization can even have macroevolutionary consequences, for example, as a driver of adaptive radiations and evolutionary innovations.

View Article and Find Full Text PDF

Integrated GWAS, BSA-seq, and RNA-seq analyses to identify candidate genes associated with male fertility trait in peach.

Plant Physiol Biochem

January 2025

National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, China. Electronic address:

Male sterility in peach (Prunus persica L.), characterized by the absence of fertile pollen grains in the anther, is determined by a recessive allele in homozygosis of the major gene located on chromosome 6. Developing tightly linked molecular markers can help identify appropriate peach parents or male-sterile plants for early culling in segregating progenies, thereby increasing breeding efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!