Fluorescence labeling of the palmitoylation sites of rhodopsin.

Biochemistry

Department of Chemistry, University of Denver, Colorado 80208.

Published: May 1994

Two tandem cysteine residues in the carboxyl-terminal region of rhodopsin have been shown to be covalently linked to palmitate via thioester bonds (Ovchinnikov, Y. A., et al. (1988) FEBS Lett. 230, 1-5). We have synthesized a fluorescent analogue of palmitoyl coenzyme A (16-(9-anthroyloxy)hexadecanoyl coenzyme A ester) and incorporated the fluorescent derivative of palmitate into the protein in high yield (> 40%) through pretreatment of bovine rod outer segments with 1 M hydroxylamine and subsequent incubation with the fluorescent label. Covalent incorporation of label into protein was demonstrated by SDS-polyacrylamide gel electrophoresis. Proteolytic digestion of labeled rhodopsin in the disc membrane with papain and thermolysin verified the C-terminal location of the label. Treatment of SDS-solubilized, labeled rod outer segments with 10% beta-mercaptoethanol provided evidence that partial depalmitoylation may induce the formation of rhodopsin aggregates. Labeled, unbleached rhodopsin was purified by chromatography over hydroxyapatite and concanavalin A-agarose and reconstituted into dimyristoylphosphatidylcholine vesicles. SDS gels of the rhodopsin vesicle preparation verified that all unbound fluorescent label had been removed and that the thioester bond linking probe to protein was not labile.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi00185a016DOI Listing

Publication Analysis

Top Keywords

rod outer
8
outer segments
8
fluorescent label
8
rhodopsin
6
fluorescence labeling
4
labeling palmitoylation
4
palmitoylation sites
4
sites rhodopsin
4
rhodopsin tandem
4
tandem cysteine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!