The active site and mechanism of action of the enzyme phosphoenolpyruvate mutase have been probed using substrate and intermediate analogues as inhibitors of the mutase-catalyzed reaction. Smaller anions (e.g. sulfite, nitrate, phosphinate, and bicarbonate) are noncompetitive inhibitors of the mutase, while larger anions in the complementary series (sulfate, phosphonate, phosphate) inhibit competitively. Combining oxalate, an intermediate analogue that is a potent inhibitor of the mutase (Ki = 25 microM), with small, noncompetitive inhibitor anions results in synergistic inhibition of the mutase, suggesting that the combined presence of oxalate and anion creates a "bimolecular transition-state analogue". The phosphoenolpyruvate (PEP) mutase genes from Tetrahymena and Streptomyces are known, and these enzymes share significant amino acid sequence similarity to the isocitrate lyase gene from Ricinus. Despite their seeming structural unrelatedness to the substrates of PEP mutase, several isocitrate analogues are good inhibitors, suggesting that isocitrate lyase and PEP mutase are evolutionarily related. An active-site model has been developed that is in accord with the data presented, which are consistent with a mechanism involving the intermediacy of a phosphoenzyme.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi00184a037 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!