Calponin inhibits actomyosin Mg2+ ATPase and is proposed to regulate smooth muscle contraction; however, the mechanism by which it exerts its effect and the regulation of its behavior is still under investigation. The proposed methods by which calponin regulation is effected include reversible phosphorylation of calponin which would allow contraction to occur and regulation by interaction with calcium-calmodulin. However, several investigators have been unable to find evidence of in vivo phosphorylation of calponin, and the affinity between calponin and calmodulin is not high enough to suggest that this interaction is biologically significant. In this paper, we present an alternative method of calponin regulation via calcium-caltropin and describe the calponin-caltropin complex for the first time. Caltropin, a calcium-binding protein isolated from smooth muscle, is a dimer under native conditions and interacts with calponin in a calcium-dependent fashion in the ratio of 2 mol of dimer: 1 mol of calponin. The formation of this complex can be monitored by following the fluorescence of an acrylodan label on cysteine 273 of calponin, which undergoes a 35-nm blue shift in wavelength peak from 505 to 470 nm when calponin becomes complexed with caltropin. This fluorescence change when titrated with calcium indicates that the concentration of calcium required for complex formation is approximately 10(-5) M, corresponding to the low-affinity calcium-binding sites of caltropin. This complex was further characterized by circular dichroism (CD).(ABSTRACT TRUNCATED AT 250 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi00184a027DOI Listing

Publication Analysis

Top Keywords

smooth muscle
12
calponin
11
calponin regulation
8
phosphorylation calponin
8
muscle calponin-caltropin
4
calponin-caltropin interaction
4
interaction biological
4
biological activity
4
activity stability
4
stability calponin
4

Similar Publications

The mechanisms linking maternal asthma (MA) exposure in utero and subsequent risk of asthma in childhood are not fully understood. Pathological airway remodelling, including reticular basement membrane thickening, has been reported in infants and children who go on to develop asthma later in childhood. This suggests altered airway development before birth as a mechanism underlying increased risk of asthma in children exposed in utero to MA.

View Article and Find Full Text PDF

The morphologic features of uterine smooth muscle tumors (USMTs) are subject to interobserver variability and are complicated by consideration of features of fumarate hydratase deficiency (FHd) and other morphologic subtypes, with difficult cases occasionally diagnosed as smooth muscle tumor of uncertain malignant potential (STUMP). We compare immunohistochemical findings and detailed morphologic analysis of 45 USMTs by 4 fellowship-trained gynecologic pathologists with comprehensive molecular analysis, focusing on FHd leiomyomas (n=15), compared to a variety of other USMTs with overlapping morphologic features, including 9 STUMPs, 8 usual-type leiomyomas (ULM), 11 apoplectic leiomyomas, and 2 leiomyomas with bizarre nuclei (LMBN). FHd leiomyomas, defined by immunohistochemical (IHC) loss of FH and/or 2SC accumulation, showed FH mutations and/or FH copy loss in all cases, with concurrent TP53 mutations in 2 tumors.

View Article and Find Full Text PDF

Nanoencapsulated Optical Fiber-Based PEC Microelectrode: Highly Sensitive and Specific Detection of NT-proBNP and Its Implantable Performance.

Anal Chem

January 2025

Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.

Microelectrodes offer exceptional sensitivity, rapid response, and versatility, making them ideal for real-time detection and monitoring applications. Photoelectrochemical (PEC) sensors have shown great value in many fields due to their high sensitivity, fast response, and ease of operation. Nevertheless, conventional PEC sensing relies on cumbersome external light sources and bulky electrodes, hindering its miniaturization and implantation, thereby limiting its application in real-time disease monitoring.

View Article and Find Full Text PDF

Rationale: Airflow obstruction refractory to β2 adrenergic receptor (β2AR) agonists is an important clinical feature of infant respiratory syncytial virus (RSV) bronchiolitis, with limited treatment options. This resistance is often linked to poor drug delivery and potential viral infection of airway smooth muscle cells (ASMCs). Whether RSV inflammation causes β2AR desensitization in infant ASMCs is unknown.

View Article and Find Full Text PDF

Case report: Multisystemic smooth muscle dysfunction syndrome: a rare genetic cause of infantile interstitial lung disease.

Front Pharmacol

January 2025

Respiratory Department II, National Clinical Research Center for Respiratory Diseases, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.

Multisystemic smooth muscle dysfunction syndrome (MSMDS) is an autosomal dominant disorder caused by mutations in the gene, resulting in variable clinical manifestation and multi-organ dysfunction. Interstitial lung disease (ILD) is a rare phenotype of this condition. We describe a rare infant case of an 8-month-old boy who presented with progressively worsening dyspnea, along with intermittent episodes of respiratory distress and cyanosis since birth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!