Selective ablation of rat brain tumors by boron neutron capture therapy.

Int J Radiat Oncol Biol Phys

Medical Department, Brookhaven National Laboratory, Upton, NY 11973.

Published: March 1994

Purpose: Damage to the surrounding normal brain tissue limits the amount of radiation that can be delivered to intracranial tumors. Boron neutron capture therapy (BNCT) is a binary treatment that allows selective tumor irradiation. This study evaluates the damage imparted to the normal brain during BNCT or x-irradiation.

Methods And Materials: The brains of rats with implanted 9L gliosarcomas were examined 1 year after tumor-curative doses of either 250 kV X rays or BNCT. Histopathologic techniques included hematoxylin and eosin staining, horseradish peroxidase perfusion, and electron microscopy.

Results: Longterm X ray survivors showed extensive cortical atrophy, loss of neurons, and widespread leakage of the blood-brain barrier (BBB), particularly around the tumor scar. In contrast, the brains and the BBB of longterm BNCT survivors appeared relatively normal under both light- and electron-microscopic examination. Intact blood vessels were observed running directly through the avascular, collagenous tumor scar.

Conclusion: The selective therapeutic effect of BNCT is evident in comparison to x-irradiation. Both groups of animals showed no evidence of residual tumor at 1 year. However, with x-irradiation there is no therapeutic ratio and tumor eradication severely injures the remaining brain parenchyma. These observations indicate a substantial therapeutic gain for BNCT.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0360-3016(94)90480-4DOI Listing

Publication Analysis

Top Keywords

tumors boron
8
boron neutron
8
neutron capture
8
capture therapy
8
normal brain
8
bnct
6
tumor
5
selective ablation
4
ablation rat
4
brain
4

Similar Publications

In this work, a multicomponent polymerization (MCP) approach involving bipyrroles, sulfonyl azides, and diynes was developed to afford a library of poly(bipyrrole-sulfonylimide)s (PPSIs) in high yields and molecular weights, which were further modified to form unique sulfur dioxide (SO2) generators. Bipyrroles served as carbon-based nucleophiles to undergo Cu-catalyzed C-C coupling during the MCP. Upon post-MCP modification by transforming the bipyrrole unit to boron dipyrromethene (BODIPY) and the sulfonylimide moiety to sulfonamide, poly(BODIPY-sulfonamide)s (PBSAs) were obtained as potent anticancer therapeutic agents.

View Article and Find Full Text PDF

Background: Waldenström's macroglobulinemia (WM) is a very rare disease with an incidence 10times lower than that of multiple myeloma. The incidence of WM is also significantly lower than that of the other CD20+ low-grade lymphomas. The rarity of WM is the reason why registration studies of new drugs used for multiple myeloma or the more common CD20+low-grade lymphomas do not cover WM.

View Article and Find Full Text PDF

5-Fluorouracil (5-Fu) is the third-most often used chemotherapeutic medication and has been scientifically demonstrated to be effective in treating solid tumors, including colorectal, stomach, cutaneous, and breast cancers. When used in excess, it accumulates toxic metabolites, which can have deadly and very harmful effects on people, including neurotoxicity and the induction of morbidity. Therefore, sensitive and rapid analytical techniques for detecting 5-Fu in human blood serum are needed to enhance chemotherapy and forecast the possible adverse effects of 5-Fu residues in the human body.

View Article and Find Full Text PDF

Photon (X-ray) radiotherapy is the most common treatment used in cancer therapy. However, the exposure of normal tissues and organs at risk to ionising radiation often results in a significant incidence of low-grade adverse side effects, whilst high-grade toxicities also occur at concerningly high rates. As an alternative, boron neutron capture therapy (BNCT) aims to create densely ionising helium and lithium ions directly within cancer cells, thus sparing the surrounding normal cells and tissues but also leading to significantly more effective tumour control than X-rays.

View Article and Find Full Text PDF

A smart cascade theranostic prodrug system activated by hydrogen peroxide for podophyllotoxin delivery.

J Mater Chem B

January 2025

State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.

Article Synopsis
  • The construction of selectively activated prodrugs reduces side effects in disease treatment by targeting specific triggers for activation.
  • Cascade self-assembled visual prodrugs combine anticancer drugs with fluorescent dyes to enable real-time monitoring of drug release.
  • A newly designed anticancer prodrug showed effective tumor suppression in mice and has potential for imaging and tailored cancer therapies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!