We have studied a girl, her sister and her mother who had a supernumerary marker chromosome in mosaicism. The marker was studied by cytogenetic methods and non-isotopic in situ hybridization with the single D22S9 DNA probe which maps to 22q11. The supernumerary chromosome was derived from a chromosome 22 and it did not present the same morphology in all the cells. At least 5 distinct types of the marker chromosome were detected and some of them were probably derived from each other (dynamic mosaicism). The proposita had an MCA pattern consistent with mild cat eye syndrome, while her sister and her mother had some of the manifestations described in this syndrome. A specific correlation could be established between phenotype and karyotype.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.1320490114DOI Listing

Publication Analysis

Top Keywords

dynamic mosaicism
8
cat eye
8
eye syndrome
8
sister mother
8
marker chromosome
8
chromosome
5
mosaicism involving
4
involving unstable
4
unstable supernumerary
4
supernumerary der22
4

Similar Publications

Discovery of sugar-based natural framework as phytopathogenic virus capsid protein inhibitors using a state-of-the-art multiple screening strategy.

Int J Biol Macromol

January 2025

State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China. Electronic address:

The prompt and efficient identification of targeted inhibitors against unscrupulous pathogenic viruses holds promise for preventing epidemic disease outbreaks. Herein, a comprehensive multichannel screening method (multiple docking cross-validation, molecular dynamics simulation, and density functional theory calculation) integrated with bioactivity identification is rationally established using sugar-based natural ligand libraries to target tobacco mosaic virus (TMV) capsid proteins. Encouragingly, compounds A0 (K = 0.

View Article and Find Full Text PDF

Cardiac chambers emerge from a heart tube that balloons and bends to create expanded ventricular and atrial structures, each containing a convex outer curvature (OC) and a recessed inner curvature (IC). A comprehensive understanding of the cellular and molecular mechanisms underlying the formation of these characteristic curvatures remains lacking. Here, we demonstrate in zebrafish that the initially similar populations of OC and IC ventricular cardiomyocytes diverge in the organization of their actomyosin cytoskeleton and subsequently acquire distinct OC and IC cell shapes.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19) poses significant risks for solid organ transplant recipients, who have atypical but poorly characterized immune responses to infection. We aim to understand the host immunologic and microbial features of COVID-19 in transplant recipients by leveraging a prospective multicenter cohort of 86 transplant recipients age- and sex-matched with 172 non-transplant controls. We find that transplant recipients have higher nasal SARS-CoV-2 viral abundance and impaired viral clearance, and lower anti-spike IgG levels.

View Article and Find Full Text PDF

Blood vessel formation relies on biochemical and mechanical signals, particularly during sprouting angiogenesis when endothelial tip cells (TCs) guide sprouting through filopodia formation. The contribution of BMP receptors in defining tip-cell characteristics is poorly understood. Our study combines genetic, biochemical, and molecular methods together with 3D traction force microscopy, which reveals an essential role of BMPR2 for actin-driven filopodia formation and mechanical properties of endothelial cells (ECs).

View Article and Find Full Text PDF

Mix-Charged Nanofiltration Membrane for Efficient Organic Removal from High-Salinity Wastewater: The Role of Charge Spatial Distribution.

Environ Sci Technol

January 2025

State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, PR China.

The efficient removal of organic contaminants from high-salinity wastewater is crucial for resource recovery and achieving zero discharge. Nanofiltration (NF) membranes are effective in separating organic compounds and monovalent salts, but they typically exhibit an excessive rejection of divalent salts. Modifying the charge characteristics of NF membranes can improve salt permeation; however, the role of charge spatial distribution in governing salt transport behavior is not fully understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!