The incorporation into rat incisor dentin of two calcium isotopes, the stable 44Ca and the radioactive 45Ca, was studied using secondary ion mass spectrometry (SIMS) step-scanning and imaging, and autoradiography, respectively. The results demonstrated a time-dependent incorporation of the calcium isotopes into the mineral phase of dentin. With the SIMS step-scanning, detecting 44Ca, the ion yield was high in the odontoblasts 2 min after intravenous injection. After 10 min a marked increase in signal intensity was found at the dentin mineralization front. This result was consistent with those obtained by 45Ca autoradiography; a peak of incorporation occurred 10 min after injection of the isotope. Likewise, localization of 44Ca to the mineralization front could be demonstrated 10 min after injection by SIMS imaging. In images obtained at earlier intervals, no such increase in ion yield could be detected. The results show that the nonradioactive, stable isotope 44Ca can be used as a marker for biomineralization in a similar way to radioactive 45Ca.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2818.1994.tb03437.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!