Staurosporine, a protein kinase inhibitor, activates K-Cl cotransport in LK sheep erythrocytes.

Am J Physiol

Department of Biology, Syracuse University, Syracuse, New York 13244.

Published: March 1994

K-Cl cotransport can participate in volume regulation in a number of cell types. Swelling activation of K-Cl cotransport in sheep erythrocytes proceeds by a two-step process, A<-->B<-->C (Dunham et al., J. Gen. Physiol. 101: 733-765, 1993). The A state, with a low flux, predominates at physiological volume. A-->B is rate limiting and can be activated by reducing cell Mg concentration ([Mg]c); complete activation (B-->C) requires cell swelling. Inhibitors of protein kinases and phosphatases were employed in an attempt to identify enzymatic reactions in the activation process. Staurosporine, a kinase inhibitor, activated K-Cl cotransport by approximately sixfold. Swelling of staurosporine-treated cells caused further activation that proceeded without delay. The effects of staurosporine and reducing [Mg]c were not additive. These two results indicate that staurosporine, like reducing [Mg]c, promotes the rate-limiting A-->B conversion. Unlike swelling, staurosporine activated cotransport without delay. Therefore staurosporine activates by promoting the forward reaction in the A<-->B conversions, in contrast to swelling, which activates by inhibiting the reverse reaction. Calyculin A, a phosphatase inhibitor, inhibited K-Cl cotransport but did not inhibit after activation by reducing [Mg]c, confirming earlier proposals that A-->B is promoted by a phosphatase. Calyculin A, added before or after staurosporine, abolished activation by staurosporine, confirming that staurosporine promotes A-->B. It is proposed that the phosphatase promoting this reaction is regulated by an inhibitory kinase, the staurosporine target.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.1994.266.3.C759DOI Listing

Publication Analysis

Top Keywords

k-cl cotransport
20
reducing [mg]c
12
staurosporine
10
kinase inhibitor
8
cotransport sheep
8
sheep erythrocytes
8
staurosporine reducing
8
cotransport
6
activation
6
k-cl
5

Similar Publications

VCP controls KCC2 degradation through FAF1 recruitment and accelerates emergence from anesthesia.

Proc Natl Acad Sci U S A

January 2025

Department of Medical Neuroscience, SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.

Ubiquitin-proteasomal degradation of K/Cl cotransporter 2 (KCC2) in the ventral posteromedial nucleus (VPM) has been demonstrated to serve as a common mechanism by which the brain emerges from anesthesia and regains consciousness. Ubiquitin-proteasomal degradation of KCC2 during anesthesia is driven by E3 ligase Fbxl4. However, the mechanism by which ubiquitinated KCC2 is targeted to the proteasome has not been elucidated.

View Article and Find Full Text PDF

Status epilepticus is linked to cognitive decline due to damage to the hippocampus, a key structure involved in cognition. The hippocampus's high vulnerability to epilepsy-related damage is the main reason for this impairment. Convulsive seizures, such as those observed in status epilepticus, can cause various hippocampal pathologies, including inflammation, abnormal neurogenesis, and neuronal death.

View Article and Find Full Text PDF

Inflammatory Pathways of Sulfonamide Diuretics: Insights into SLC12A Cl Symporters and Additional Targets.

Cell Physiol Biochem

January 2025

Department of Pharmacology and Toxicology, Wright State University, School of Medicine. Dayton, Ohio, United States,

Thiazide, thiazide-like, and loop diuretics are primarily known for inhibiting members of the SLC12A family of Cl transporters, which include the Na+Cl cotransporter (NCC), NaK2Cl cotransporters (NKCC1 and NKCC2) and KCl symporters (KCC1-4). While the main pharmacological effect of these diuretics is diuresis, achieved by promoting the excretion of excess water and salt through the kidneys, they have intriguing pharmacological effects beyond their traditional ones which cannot be solely attributed to their effects on renal salt transport. Of particular interest is their role in modulating inflammatory processes.

View Article and Find Full Text PDF

Protein Structural Modeling and Transport Thermodynamics Reveal That Plant Cation-Chloride Cotransporters Mediate Potassium-Chloride Symport.

Int J Mol Sci

December 2024

School of Agriculture, Food and Wine, Waite Research Institute, Faculty of Sciences, Engineering and Technology, University of Adelaide, Waite Campus Precinct, Glen Osmond, Adelaide, SA 5064, Australia.

Plant cation-chloride cotransporters (CCCs) are proposed to be Na-K-2Cl transporting membrane proteins, although evolutionarily, they associate more closely with K-Cl cotransporters (KCCs). Here, we investigated grapevine ( L.) VvCCC using 3D protein modeling, bioinformatics, and electrophysiology with a heterologously expressed protein.

View Article and Find Full Text PDF

Role of BDNF-TrkB signaling in the improvement of motor function and neuroplasticity after ischemic stroke in rats by transcranial direct current stimulation.

Brain Res Bull

January 2025

Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016,  China. Electronic address:

Background: Transcranial direct current stimulation (tDCS) has an impact on improving cognitive and motor dysfunction induced by ischemia-reperfusion injury. However, to use this technology more rationally in clinical practice, a deepened understanding of the molecular mechanisms behind its therapeutic effects is needed. This study explored the role of the brain-derived neurotrophic factor(BDNF) and its associated receptor tropomyosin-receptor kinase B(TrkB) while deciphering the underlying mechanisms in transcranial direct current therapy to treat ischemic stroke.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!