We have isolated a cDNA (cNPK5) that encodes a protein kinase of 511 amino acids from suspension cultures of tobacco cells. The predicted kinase domain of NPK5 is 65% identical in terms of amino acid sequence to that of the SNF1 serine/threonine protein kinase of Saccharomyces cerevisiae, which plays a central role in catabolite repression in yeast cells. SNF1 positively regulates transcription of various glucose-repressible genes of the yeast, such as the SUC2 gene for a secreted invertase, in response to glucose deprivation: snf1 mutants cannot utilize sucrose as a carbon source. Expression of cNPK5 in yeast cells allowed the snf1 mutant cells to utilize sucrose for growth and caused constitutive expression of the SUC2 gene in wild-type cells even in the presence of glucose, an indication that the NPK5 protein is present in a constitutively active form in S. cerevisiae. On the other hand, expression of cNPK5 failed to suppress the growth defect of the snf4 mutant cells in the presence of sucrose and to induce expression of the SUC2 gene. These results indicate that SNF4 is required for the induction of SUC2 expression by NPK5, as by SNF1, even if NPK5 is constitutively active in S. cerevisiae. The recombinant NPK5 protein is capable of autophosphorylation in vitro in a reaction that requires Mn2+ rather than Mg2+ ions but is inhibited by Ca2+ ions. Both dicotyledonous and monocotyledonous plants have several copies of the NPK5-related gene, which probably constitute a small gene family. NPK5-related genes were found to be expressed in the roots, leaves, and stems of tobacco plants. The high degree of structural conservation and the functional similarity of NPK5 to SNF1 lead us to speculate that NPK5 (or a related kinase) also plays a role in sugar metabolism in higher plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC358663 | PMC |
http://dx.doi.org/10.1128/mcb.14.5.2958-2965.1994 | DOI Listing |
Plant Signal Behav
December 2024
School of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China.
The capability of the transition from skotomorphogenesis-to-photomorphogenesis (de-etiolation) is requisite for seedling survival and development. However, how carbohydrate in germinating seeds controls seedling de-etiolation remains unclear. Mu et al.
View Article and Find Full Text PDFFront Plant Sci
August 2024
Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, China.
, a significant woody oil crop in southern China, produces oil from its fruit seeds. Understanding sugar metabolism enzyme regulation is crucial for sugar accumulation and oil synthesis in fruit organs. This study examines the dynamic changes in sugar metabolism across four developmental stages of fruits, from rapid fruit enlargement to oil conversion.
View Article and Find Full Text PDFAnimals (Basel)
June 2024
Animal Production Research Institute (APRI), Agricultural Research Center (ARC), Ministry of Agriculture, Dokki, Giza 12611, Egypt.
This study investigated how sucralose influenced rabbit intestine and caecal microbial activity, blood parameters, growth performance, carcass characteristics, and digestibility. In total, 160 5-week-old rabbits from the APRI line weighing 563.29 gm were randomly assigned to four experimental groups with four replicates-5 males and 5 females in each.
View Article and Find Full Text PDFJ Exp Bot
November 2023
Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA.
MYZUS PERSICAE-INDUCED LIPASE1 (MPL1) encodes a lipase in Arabidopsis thaliana that is required for limiting infestation by the green peach aphid (GPA; Myzus persicae), an important phloem sap-consuming insect pest. Previously, we demonstrated that MPL1 expression was up-regulated in response to GPA infestation, and GPA fecundity was higher on the mpl1 mutant, compared with the wild-type (WT), and lower on 35S:MPL1 plants that constitutively expressed MPL1 from the 35S promoter. Here, we show that the MPL1 promoter is active in the phloem and expression of the MPL1 coding sequence from the phloem-specific SUC2 promoter in mpl1 is sufficient to restore resistance to GPA.
View Article and Find Full Text PDFJ Fungi (Basel)
July 2023
Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil.
In Brazil, sucrose-rich broths (cane juice and/or molasses) are used to produce billions of liters of both fuel ethanol and per year using selected industrial strains. Considering the important role of feedstock (sugar) prices in the overall process economics, to improve sucrose fermentation the genetic characteristics of a group of eight fuel-ethanol and five industrial yeasts that tend to dominate the fermentors during the production season were determined by array comparative genomic hybridization. The widespread presence of genes encoding invertase at multiple telomeres has been shown to be a common feature of both baker's and distillers' yeast strains, and is postulated to be an adaptation to sucrose-rich broths.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!