The effect of the nitric oxide (NO) synthase inhibitor N omega-nitro-L-arginine methyl ester (L-NAME) on the response of cerebrocortical oxygen consumption (CMRO2) and blood flow (CBF) to two levels of hypercapnia (PaCO2 approximately 60 mm Hg and PaCO2 approximately 90 mm Hg) was investigated in ketamine-anesthetized rats. CBF was calculated using the Kety-Schmidt approach and CMRO2 was calculated from the product of CBF and the arteriovenous (superior sagittal sinus) difference for oxygen. L-NAME treatment did not have a significant effect on either CMRO2 or CBF under normocapnic conditions but inhibited the hypercapnic increase of CMRO2 and the hypercapnic increase in CBF. These results suggest that NO plays a role in the response of CMRO2 and CBF during hypercapnia and are consistent with the suggestion that at least part of the increase in CBF observed during hypercapnia is coupled to an increase in CMRO2.

Download full-text PDF

Source
http://dx.doi.org/10.1038/jcbfm.1994.62DOI Listing

Publication Analysis

Top Keywords

nitric oxide
8
cerebrocortical oxygen
8
oxygen consumption
8
blood flow
8
cmro2 cbf
8
hypercapnic increase
8
increase cmro2
8
increase cbf
8
cbf
7
cmro2
6

Similar Publications

Background: Pelvic trauma can have long-lasting debilitating effects, including severe erectile dysfunction (ED) in men. While there are effective treatments for ED, these treat the symptoms not the cause. Those who suffer from an acute traumatic injury to the neurovascular supply of penis, may benefit from regenerative therapy.

View Article and Find Full Text PDF

The therapeutic effects of probiotics in patients with traumatic brain injury (TBI) remain unclear. This study aimed to investigate the effects of probiotic supplementation on cell adhesion molecules, oxidative stress, and antioxidant parameters in TBI patients. This randomized, double-blind, placebo-controlled trial included 46 TBI patients who were randomly assigned to receive either a probiotic supplement (n = 23) or a placebo (n = 23) for 14 days.

View Article and Find Full Text PDF

Colorectal cancer (CRC) represents a significant global health challenge, with approximately 1.8 million new cases diagnosed annually and a mortality toll exceeding 881,000 lives each year. This study aimed to evaluate the chemoprotective efficacy of Cyanidin-3-glucoside (C3G) in a rat model of CRC induced by 1,2-dimethylhydrazine (DMH).

View Article and Find Full Text PDF

Hyaluronic acid-mediated targeted nano-modulators for activation of pyroptosis for cancer therapy through multichannel regulation of Ca overload.

Int J Biol Macromol

January 2025

Hubei Key Laboratory of Industry Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China. Electronic address:

Calcium-based nanomaterials-mediated Ca overload-induced pyroptosis and its application in tumor therapy have received considerable attention. However, the calcium buffering capacity of tumor cells can maintain mitochondrial calcium homeostasis, so it is important to effectively disrupt this homeostasis to activate pyroptosis. Here, a nano-modulator CUR@CaCO-PArg@HA (CCAH) was developed to regulate calcium overload in multiple channels and activate pyroptosis.

View Article and Find Full Text PDF

Carboxymethyl polysaccharides from Poria cocos (Schw.) wolf: Structure, immunomodulatory, anti-inflammatory, tumor cell proliferation inhibition and antioxidant activity.

Int J Biol Macromol

January 2025

Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.. Electronic address:

This study comprehensively explores the relationship between the structure of carboxymethyl-pachymaran (CMP) and its diverse biological activities, including immunomodulation, anti-inflammatory effects, tumor cell proliferation inhibition, and antioxidant activity. By adjusting preparation parameters, highly purified CMP samples with varying degrees of substitution (DS) and molecular weights (Mw) were successfully obtained. The results indicate that CMP, composed primarily of β-D-glucan, exhibits different levels of activity depending on its structural characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!