Neurosteroids modulate calcium currents in hippocampal CA1 neurons via a pertussis toxin-sensitive G-protein-coupled mechanism.

J Neurosci

Department of Pharmacology, Zeneca Pharmaceuticals Group, Zeneca Inc., Wilmington, Delaware 19897.

Published: April 1994

The inhibition of Ca2+ channel currents by endogenous brain steroids was examined in freshly dissociated pyramidal neurons from the adult guinea pig hippocampal CA1 region. The steady-state inhibition of the peak Ca2+ channel current evoked by depolarizing steps from -80 to -10 mV occurred in a concentration-dependent manner with the following IC50 values: pregnenolone sulfate (PES), 11 nM; pregnenolone (PE), 130 nM; and allotetrahydrocorticosterone (THCC), 298 nM. THCC, PE, and PES depressed a fraction of the Ca2+ channel current with a maximal inhibition of 60% of the total current. However, substitution of an acetate group for the sulfate group on PES resulted in a complete loss of activity. Progesterone had no effect (4% inhibition at 100 microM). Intracellular dialysis of PES had no effect on the Ca2+ current; concomitant extracellular perfusion of PES showed normal inhibitory activity, suggesting that the steroid binding site can only be accessed extracellularly. Analysis of tail currents at -80 mV demonstrated that THCC and PES slowed the rate of Ca2+ current activation and deactivation with no change in the voltage dependence of activation. Inhibition of the Ca2+ channel current by THCC and PES was voltage dependent. THCC primarily inhibits the omega-conotoxin (CgTX)-sensitive or N-type Ca2+ channel current. PE was nonselective in inhibiting both the CgTX- and the nifedipine (NIF)-sensitive Ca2+ channel current. These neurosteroids had no effect on the CgTX/NIF-insensitive current. In neurons isolated from pertussis toxin (PTX)-treated animals by chronic intracerebroventricular infusion (1000 ng/24 hr for 48 hr), the Ca2+ channel current inhibition by PES, PE, and THCC was significantly diminished. Intracellular dialysis with GDP-beta-S (500 microM) also significantly diminished the neurosteroid inhibition of the Ca2+ channel current. Intracellular dialysis with the general kinase inhibitors H-7 (100 microM), staurosporine (400 nM), and a 20 amino acid protein kinase inhibitor (1 microM) also significantly prevented the THCC and PES inhibition of the Ca2+ channel current. Intracellular dialysis with the more specific inhibitors of protein kinase C (PKC), the pseudosubstrate inhibitor (PKCI 19-36) (1-2 microM) and bisindolylmaleimide (1 microM) significantly diminished the THCC and PE inhibition of the Ca2+ channel current. Rp- cAMP (100 microM), a specific inhibitor of cAMP-dependent protein kinase (PKA), had no effect on the THCC and PE inhibition of the Ca2+ current.(ABSTRACT TRUNCATED AT 400 WORDS)

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6577138PMC
http://dx.doi.org/10.1523/JNEUROSCI.14-04-01963.1994DOI Listing

Publication Analysis

Top Keywords

ca2+ channel
40
channel current
36
inhibition ca2+
24
thcc pes
16
intracellular dialysis
16
ca2+
13
current
13
100 microm
12
protein kinase
12
inhibition
10

Similar Publications

Action potential-independent spontaneous microdomain Ca transients-mediated continuous neurotransmission regulates hyperalgesia.

Proc Natl Acad Sci U S A

January 2025

Department of Neurology, the Second Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China.

Neurotransmitters and neuromodulators can be released via either action potential (AP)-evoked transient or AP-independent continuous neurotransmission. The elevated AP-evoked neurotransmission in the primary sensory neurons plays crucial roles in hyperalgesia. However, whether and how the AP-independent continuous neurotransmission contributes to hyperalgesia remains largely unknown.

View Article and Find Full Text PDF

Transient receptor potential melastatin-4 (TRPM4) ion channel expression is upregulated in prostate cancer (PCa), contributing to increased cell proliferation, migration, adhesion, epithelial-to-mesenchymal transition, cell cycle shift, and alterations of intracellular Ca signaling. GEO2R platform analysis of messenger RNA (mRNA) expression of ~ 6350 genes in normal and malignant prostate tissue samples from 15 PCa patients demonstrates that TRPM4 expression is upregulated sixfold and is among the most significantly upregulated genes in PCa. We find that absence of TRPM4 reduced PCa tumor spheroid size and decreased PCa tumor spheroid outgrowth.

View Article and Find Full Text PDF

We developed an isolated auditory papilla of the crested gecko to record from the hair cells and explore the origins of frequency tuning. Low-frequency cells displayed electrical tuning, dependent on Ca-activated K channels; high-frequency cells, overlain with sallets, showed a variation in hair bundle stiffness which when combined with sallet mass could provide a mechanical resonance of 1 to 6 kHz. Sinusoidal electrical currents injected extracellularly evoked hair bundle oscillations at twice the stimulation frequency, consistent with fast electromechanical responses from hair bundles of two opposing orientations, as occur in the sallets.

View Article and Find Full Text PDF

The occurrence of external L-glutamate at the Arabidopsis root tip triggers major changes in root architecture, but the mechanism of -L-Glu sensing is unknown. Members of the family of GLUTAMATE RECEPTOR-LIKE (GLR) proteins are known to act as amino acid-gated Ca-permeable channels and to have signalling roles in diverse plant processes. To investigate the possible role of GLRs in the root architectural response to L-Glu, we screened a collection of mutants with T-DNA insertions in each of the 20 AtGLR genes.

View Article and Find Full Text PDF

Lipopolysaccharide-Neutralizing Peptide Modulates P2X7 Receptor-Mediated Interleukin-1β Release.

ACS Pharmacol Transl Sci

January 2025

Pharmaceutical Institute, Pharmacology and Toxicology, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany.

Lipopolysaccharide (LPS)-neutralizing peptides are emerging as new potential therapeutic modalities to treat sepsis and skin infections. Purinergic ligand-gated ion channels (P2X receptors) play a critical role in various biological processes, including inflammation. Recent drug development efforts have significantly focused on the modulation of P2X receptors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!