AI Article Synopsis

Article Abstract

Opioids elicit an increase in the intracellular free Ca2+ concentration ([Ca2+]i) in neuroblastoma x glioma hybrid NG108-15 cells, which, depending upon growth conditions, results from either Ca2+ influx in differentiated cells or Ca2+ release from internal stores in undifferentiated cells (Jin et al., 1992). In this report we describe fura-2-based digital imaging studies that demonstrate that opioid-evoked Ca2+ release in these cells results from the activation of phospholipase C (PLC) and subsequent mobilization of the inositol 1,4,5-trisphosphate (IP3)-sensitive store. D-Ala2-D-Leu5-enkephalin (DA-DLE) evoked concentration-dependent increases in [Ca2+]i (EC50 approximately equal to 4 nM). The response was blocked by naloxone (1 microM). In single cells, sequential application of selective opioid agonists (10 nM) evoked responses of the rank order DADLE = D-Pen2, D-Pen5-enkephalin (DPDPE) > trans-(+/-) 3,4-dichloro-N-methyl-N-(2-[1- pyrrolidinyl]cyclohexyl) benzeneacetamide (U50488) > D-ala2, N-Me-Phe4, Gly5-ol-enkephalin (DAMGO), consistent with activation of a delta-opioid receptor. Forty percent (n = 198) of the cells responded to 100 nM DADLE with a net [Ca2+]i increase of 483 +/- 40 nM. Bradykinin (100 nM) elicited a response in 91% of the cells with a mean net amplitude of 707 +/- 36 nM. The DADLE-evoked responses were not blocked by removal of extracellular Ca2+; instead, they were abolished by treatment with 10 nM thapsigargin, an agent that depletes and prevents refilling of IP3-sensitive Ca2+ stores. A 1 microM concentration of U73122, an aminosteroid inhibitor of PLC, completely blocked the DADLE-evoked [Ca2+]i increase, while an inactive analog, U73433, was without effect. To explore the possible role of G-proteins in mediating opioid-induced [Ca2+]i increases in NG108-15 cells, we pretreated cells with pertussis or cholera toxin; pertussis toxin blocked the opioid-induced response while cholera toxin was without effect, consistent with a Gi- or Go-mediated effect. Activation of the opioid inhibitory pathway previously described for these cells appears to stimulate the phosphoinositide (PI) cascade as well. Including the PI cascade among the multiple second messenger systems modulated by opioids may be key to understanding the biochemical events that underlie acute and chronic opioid action.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6577124PMC
http://dx.doi.org/10.1523/JNEUROSCI.14-04-01920.1994DOI Listing

Publication Analysis

Top Keywords

ng108-15 cells
12
cells
11
ca2+ release
8
[ca2+]i increase
8
cholera toxin
8
ca2+
6
[ca2+]i
5
opioids mobilize
4
mobilize calcium
4
calcium inositol
4

Similar Publications

Effect of calcium ions on the aggregation of highly phosphorylated tau.

Biochem Biophys Rep

December 2024

Laboratory of Biochemistry, School of Pharmacy, Nihon University, Narashinodai, Funabashi, Chiba, 274-8555, Japan.

Tau is typically an axonal protein, but in neurons of brains affected by Alzheimer's disease (AD), aggregation of hyperphosphorylated tau in the somatodendritic compartment causes neuronal death. We have previously demonstrated that tau mRNA is transported within dendrites and undergoes immediate translation and hyperphosphorylation of AD epitopes in response to NMDA receptor stimulation. Although this explains the emergence of hyperphosphorylated tau in dendrites, the relationship between tau hyperphosphorylation and aggregation is not well understood.

View Article and Find Full Text PDF

Revisiting opioid toxicity: Cellular effects of six commonly used opioids.

Scand J Pain

January 2024

The Beijer laboratory, Neuropharmacology and Addiction Research, Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24, Uppsala, Sweden.

Objectives: There is an ongoing opioid crisis in the United States where the illicit and non-medical use of prescription opioids is associated with an increasing number of overdose deaths. Few studies have investigated opioid-induced effects on cell viability, and comparative studies are limited. Here, we examine the toxicity of six commonly used opioids: methadone, morphine, oxycodone, hydromorphone, ketobemidone, and fentanyl with respect to mitochondrial and membrane function .

View Article and Find Full Text PDF

Research on GM1 ganglioside and its neuroprotective role in Parkinson's disease (PD), particularly in mitigating the aggregation of α-Synuclein (aSyn), is well established across various model organisms. This essential molecule, GM1, is intimately linked to preventing aSyn aggregation, and its deficiency is believed to play a key role in the initiation of PD. In our current study, we attempted to shed light on the cytosolic interactions between GM1 and aSyn based on previous reports demonstrating gangliosides and monomeric aSyn to be present in neuronal cytosol.

View Article and Find Full Text PDF

A phytochemical study on the bark of Chisocheton erythrocarpus Hiern (Meliaceae) has led to the isolation of six new phragmalin-type limonoids named erythrocarpines I - N (1-6) along with one known limonoid, erythrocarpine F (7). Their structures were fully characterized by spectroscopic methods. The pre-treatment of NG108-15 cells with 1-5, 7 (2 h) demonstrated low to good protective effects against HO exposure; 1 (83.

View Article and Find Full Text PDF

Polyhydroxyalkanoates are natural, biodegradable, thermoplastic and sustainable polymers with a huge potential in fabrication of bioresorbable implantable devices for tissue engineering. We describe a comparative evaluation of three medium chain length polyhydroxyalkanoates (mcl-PHAs), namely poly(3-hydroxyoctanoate), poly(3-hydroxyoctanoate-co-3-hydoxydecanoate) and poly(3-hydroxyoctanoate-co-3-hydroxydecanoate-co-3-hydroxydodecanoate), one short chain length polyhydroxyalkanoate, poly(3-hydroxybutyrate), P(3HB) and synthetic aliphatic polyesters (polycaprolactone and polylactide) with a specific focus on nerve regeneration, due to mechanical properties of mcl-PHAs closely matching nerve tissues. biological studies with NG108-15 neuronal cell and primary Schwann cells did not show a cytotoxic effect of the materials on both cell types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!