The specificity of Golgi-membrane glycoprotein 6-alpha-[L]-fucosyltransferase [GDP-[L]-fucose: 2-acetamido-2-deoxy- beta-[D]-glucoside (Fuc-->Asn-linked GlcNAc) 6-alpha-[L]-fucosyltransferase; EC 2.4.1.68] has been assessed with regard to substrate covalent structures and the effect of a protein matrix on the conformational display of those covalent structures. Specificity was studied by direct comparison of the substrate quality of nine 6-biotinamidohexanoylAsn (= R) derivatives of intermediates and products in the pathway from Man5GlcNAc2-R to a fully sialylated biantennary complex-type glycan. The Man5 derivative and the sialic acid-containing glycans were completely inactive as substrates. The other glycans were all fucosylated; the best substrate was GlcNAcMan3GlcNAc2-R. The protein-matrix effect was studied by comparing the substrate quality of the same 6-biotinamidohexanoylAsn derivatives as well as the corresponding biotinylAsn derivatives free in solution and bound to streptavidin. On the basis of a model derived from the known 3D structure of biotin (biocytin)-saturated streptavidin, it was predicted that the fucosylation site in the substrates would be completely masked in the biotin-binding pocket in the biotinyl derivatives (proximal display), and at least partially masked in the 6-biotinamidohexanoyl derivatives (distal display). The activity measurements were in agreement with these predictions; the glycan structures GlcNAcMan5GlcNAc2-, GlcNAcMan3GlcNAc2-, and GlcNAc2-Man3GlcNAc2- were readily fucosylated as derivatives free in solution, but were totally inert in the proximal complex with streptavidin. In the distal complexes the latter two structures were found to be fucosylated very slowly while the former structure was inactive.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0008-6215(94)84283-3 | DOI Listing |
ACS Catal
August 2021
Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza 50018, Spain.
FUT8 is an essential α-1,6-fucosyltransferase that fucosylates the innermost GlcNAc of N-glycans, a process called core fucosylation. , FUT8 exhibits substrate preference for the biantennary complex N-glycan oligosaccharide (G0), but the role of the underlying protein/peptide to which N-glycans are attached remains unclear. Here, we explored the FUT8 enzyme with a series of N-glycan oligosaccharides, N-glycopeptides, and an Asn-linked oligosaccharide.
View Article and Find Full Text PDFJ Biol Chem
November 2003
Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA.
We had shown previously that all major glycoproteins of pigeon egg white contain Galalpha1-4Gal epitopes (Suzuki, N., Khoo, K. H.
View Article and Find Full Text PDFBiochim Biophys Acta
July 2000
Institut für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Vienna, Austria.
Transgenic animals are a promising source of pharmaceutically-relevant proteins or as a source of organs for xenotransplantation. Beside other posttranslational modifications, glycosylation has been shown to be a critical parameter for the correct function of several glycoproteins. To analyse the contribution of alpha 1,6-fucosylation to N-glycan variability, we partly purified alpha 1,6-fucosyltransferase (alpha 1,6-Fuc-T) activities from various tissues (brain, lung, heart, liver) of agriculturally-relevant animals (porcine, sheep, bovine, rabbit, chicken) and compared some of their biochemical properties.
View Article and Find Full Text PDFFEBS Lett
November 1999
Department of Medical Chemistry, Vrije Universiteit, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.
We have identified a core alpha1-->3-fucosyltransferase activity in the albumin and prostate glands of the snail Lymnaea stagnalis. Incubation of albumin gland extracts with GDP-[(14)C]Fuc and asialo/agalacto-glycopeptides from human fibrinogen resulted in a labeled product in 50% yield. Analysis of the product by 400 MHz (1)H-NMR spectroscopy showed the presence of a Fuc residue alpha1-->3-linked to the Asn-linked GlcNAc.
View Article and Find Full Text PDFJ Biol Chem
July 1999
Institute of Chemistry, Universität für Bodenkultur, Muthgasse 18, 1190 Wien, Austria.
Substitution of the asparagine-linked GlcNAc by alpha1,3-linked fucose is a widespread feature of plant as well as of insect glycoproteins, which renders the N-glycan immunogenic. We have purified from mung bean seedlings the GDP-L-Fuc:Asn-linked GlcNAc alpha1,3-fucosyltransferase (core alpha1,3-fucosyltransferase) that is responsible for the synthesis of this linkage. The major isoform had an apparent mass of 54 kDa and isoelectric points ranging from 6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!