Human hepatocyte polyploidization kinetics in the course of life cycle.

Virchows Arch B Cell Pathol Incl Mol Pathol

Institute of Cytology, Russian Academy of Sciences, St-Petersburg.

Published: May 1994

The processes of polyploidization in normal human liver parenchyma from 155 individuals aged between 1 day and 92 years were investigated by Feulgen-DNA cytophotometry. It was shown that polyploid hepatocytes appear in individuals from 1 to 5 years old. Up to the age of 50 years the accumulation rate of binucleate and polyploid cells is very slow, but subsequently hepatocyte polyploidization is intensified, and in patients aged 86-92 years the relative number of cells with polyploid nuclei is about 27%. Only a few hepatocytes in the normal human liver reach 16C and 8C x 2 ploidy levels for mononucleate and binucleate cells respectively. Using a mathematical modeling method, it was shown that during postnatal liver growth the polyploidization process in human liver is similar to that in the rat, and that polyploid cells are formed mainly from binucleate cells. As in rats, prior to an increase in ploidy level, diploid human hepatocytes can pass several times through the usual mitotic cycles maintaining their initial ploidy level. After birth, only one in ten hepatocytes starting DNA synthesis enters the polyploidization process. At maturity about 60% of 2C-hepatocytes starting DNA synthesis divide by conventional mitosis, the rest dividing by acytokinetic mitosis leading to the formation of binucleate cells. During ageing the probability of hepatocyte polyploidization increases and in this period there are two polyploid or binucleate cells for every diploid dividing by conventional mitosis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02915139DOI Listing

Publication Analysis

Top Keywords

binucleate cells
16
hepatocyte polyploidization
12
human liver
12
normal human
8
polyploid cells
8
polyploidization process
8
ploidy level
8
starting dna
8
dna synthesis
8
conventional mitosis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!