Radiation brain injury is reduced by the polyamine inhibitor alpha-difluoromethylornithine.

Radiat Res

Department of Neurological Surgery, School of Medicine, University of California, San Francisco 94143-0520.

Published: April 1994

Alpha-difluoromethylornithine (DFMO) was used to reduce 125I-induced brain injury in normal beagle dogs. Different DFMO doses and administration schedules were used to determine if the reduction in brain injury was dependent on dose and/or dependent upon when the drug was administered relative to the radiation treatment. Doses of DFMO of 75 mg/kg/day and 37.5 mg/kg/day given 2 days before, during and for 14 days after irradiation reduced levels of putrescine (PU) in the cerebrospinal fluid relative to controls. Volume of edema was significantly reduced by 75 mg/kg/day of DFMO before, during and after irradiation and by the same dose when the drug was started immediately after irradiation. A reduction in edema volume after 37.5 mg/kg/day before, during and after irradiation was very near significance. Ultrafast CT studies performed on dogs that received a DFMO dose of 75 mg/kg/day before, during and after irradiation suggested that the reduced edema volume was associated with reduced vascular permeability. Volume of necrosis and volume of contrast enhancement (breakdown of the blood-brain barrier) were significantly lower than controls only after a DFMO dose of 75 mg/kg/day before, during and after irradiation. These latter data, coupled with the findings relative to edema, suggest that different mechanisms may be involved with respect to the effects of DFMO on brain injury, or that the extents of edema, necrosis and breakdown of the blood-brain barrier may depend upon different levels of polyamine depletion. The precise mechanisms by which DFMO exerts the effects observed here need to be determined.

Download full-text PDF

Source

Publication Analysis

Top Keywords

brain injury
16
mg/kg/day irradiation
12
dfmo
8
375 mg/kg/day
8
edema volume
8
dfmo dose
8
dose mg/kg/day
8
breakdown blood-brain
8
blood-brain barrier
8
mg/kg/day
6

Similar Publications

Impact of LITAF on Mitophagy and Neuronal Damage in Epilepsy via MCL-1 Ubiquitination.

CNS Neurosci Ther

January 2025

Department of Neurology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China.

Objective: This study aims to investigate how the E3 ubiquitin ligase LITAF influences mitochondrial autophagy by modulating MCL-1 ubiquitination, and its role in the development of epilepsy.

Methods: Employing single-cell RNA sequencing (scRNA-seq) to analyze brain tissue from epilepsy patients, along with high-throughput transcriptomics, we identified changes in gene expression. This was complemented by in vivo and in vitro experiments, including protein-protein interaction (PPI) network analysis, western blotting, and behavioral assessments in mouse models.

View Article and Find Full Text PDF

Background: Ischemic stroke is a prevalent and life-threatening cerebrovascular disease that is challenging to treat and associated with a poor prognosis. Astragaloside IV (AS-IV), a primary bioactive component of Astragali radix, has demonstrated neuroprotective benefits in previous studies. This study aimed to explore the mechanisms through which AS-IV may treat cerebral ischemia-reperfusion injury (CIRI).

View Article and Find Full Text PDF

Exploring the Research Focus of RNA-Binding Proteins in Trauma and Burns.

Anal Cell Pathol (Amst)

December 2024

Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China.

Trauma and burns are leading causes of death and significant global health concerns. RNA-binding proteins (RBPs) play a crucial role in post-transcriptional gene regulation, influencing various biological processes of cellular RNAs. This study aims to review the emerging trends and key areas of research on RBPs in the context of trauma and burns.

View Article and Find Full Text PDF

Unlabelled: Mild hypoxic-ischemic encephalopathy is common in neonates with no evidence-based therapies, and 30-40% of patients experience adverse outcomes. The nature and progression of mild injury is poorly understood. Thus, we studied the evolution of mild perinatal brain injury using longitudinal two-photon imaging of transgenic fluorescent proteins as a novel readout of neuronal viability and activity at cellular resolution.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a leading cause of mortality and disability worldwide and can lead to secondary sequelae such as increased seizure susceptibility. Emerging work suggests that the thalamus, the relay center of the brain that undergoes secondary damage after cortical TBI, is involved with heightened seizure risks after TBI. TBI also induces the recruitment of peripheral immune cells, including T cells, to the site(s) of injury, but it is unclear how these cells impact neurological sequelae post-TBI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!