Purpose: A multi-institutional experience in radiosurgery for solitary brain metastases was combined to identify factors associated with safety, efficacy, tumor control, and survival.
Materials And Methods: A review of 116 patients with solitary brain metastases who underwent gamma knife stereotactic radiosurgery at five institutions was performed. The median follow-up was 7 months following radiosurgery and 12 months following diagnosis. Minimum tumor doses varied from 8-30 Gy (mean, 17.5 Gy). Forty-five patients failed prior radiotherapy and 71 had no prior brain irradiation. Fifty-one patients had radiosurgery alone and 65 underwent combined radiosurgery with fractionated large-field radiotherapy (mean dose, 33.8 Gy).
Results: Median survival was 11 months after radiosurgery and 20 months after diagnosis. Follow-up documented local tumor control in 99 patients (85%), tumor recurrence in 17 (15%), and documented radiation necrosis in one (1%). The 2-year actuarial tumor control rate was 67 +/- 8%. Tumor histology affected survival (better for breast cancer, p = .004) and local control (better for melanoma and renal cell, p = .0003) in multivariate analyses. Combined fractionated radiotherapy and radiosurgery improved local control (p = 0.111), but not survival in multivariate testing.
Conclusion: Radiosurgery is effective in controlling solitary brain metastases with low morbidity. Further study is needed to better define optimum treatment parameters for radiosurgery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0360-3016(94)90098-1 | DOI Listing |
Cureus
December 2024
Neurosurgery, Npistanbul Brain Hospital, Istanbul, TUR.
Intracranial solitary fibrous tumors (SFTs) and hemangiopericytomas (HPCs) are rare, aggressive tumors typically found along the dural sinuses. Despite their aggressive nature, complete surgical resection remains the most significant factor in reducing recurrence and improving survival. Here, we present the case of a 32-year-old male patient who presented with a new-onset headache and vertigo.
View Article and Find Full Text PDFJ Comp Neurol
January 2025
Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.
The parabrachial nucleus (PB), located in the dorsolateral pons, contains primarily glutamatergic neurons that regulate responses to a variety of interoceptive and cutaneous sensory signals. One lateral PB subpopulation expresses the Calca gene, which codes for the neuropeptide calcitonin gene-related peptide (CGRP). These PB neurons relay signals related to threatening stimuli such as hypercarbia, pain, and nausea, yet their inputs and their neurochemical identity are only partially understood.
View Article and Find Full Text PDFCureus
December 2024
Department of Technology and Clinical Trials, Advanced Research, Deerfield Beach, USA.
This paper investigates the potential of artificial intelligence (AI) and machine learning (ML) to enhance the differentiation of cystic lesions in the sellar region, such as pituitary adenomas, Rathke cleft cysts (RCCs) and craniopharyngiomas (CP), through the use of advanced neuroimaging techniques, particularly magnetic resonance imaging (MRI). The goal is to explore how AI-driven models, including convolutional neural networks (CNNs), deep learning, and ensemble methods, can overcome the limitations of traditional diagnostic approaches, providing more accurate and early differentiation of these lesions. The review incorporates findings from critical studies, such as using the Open Access Series of Imaging Studies (OASIS) dataset (Kaggle, San Francisco, USA) for MRI-based brain research, highlighting the significance of statistical rigor and automated segmentation in developing reliable AI models.
View Article and Find Full Text PDFJ Neuroendocrinol
January 2025
Department of Psychology, Columbia University, New York, New York, USA.
Among contributors to diffusible signaling are portal systems which join two capillary beds through connecting veins. Portal systems allow diffusible signals to be transported in high concentrations directly from one capillary bed to the other without dilution in the systemic circulation. Two portal systems have been identified in the brain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!