Tobacco-specific nitrosamines are a group of carcinogens formed from nicotine and related tobacco alkaloids. Two of these compounds, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine, are believed to be involved as causative agents for cancers of the lung, oral cavity, esophagus, and pancreas associated with the use of tobacco products. The goal of the studies described here is to develop biomarkers which will allow us to understand the uptake, metabolic activation, and detoxification of these carcinogens in humans. Two metabolites of NNK, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol and its glucuronide, have been identified and quantified in human urine. These metabolites allow assessment of NNK uptake in smokers, tobacco chewers, and people exposed to environmental tobacco smoke. NNK and N'-nitrosonornicotine form hemoglobin and DNA adducts upon metabolic activation by alpha-hydroxylation. These adducts release 4-hydroxy-1-(3-pyridyl)-1-butanone (HPB) upon hydrolysis. The released 4-hydroxy-1-(3-pyridyl)-1-butanone can be quantified by gas chromatography-mass spectrometry. A subset of smokers and most tobacco chewers have hemoglobin adduct levels which are higher than detected in nonsmokers. 4-Hydroxy-1-(3-pyridyl)-1-butanone-releasing DNA adducts are higher in lung tissue from smokers than from nonsmokers. These data indicate that some smokers and tobacco chewers are capable of metabolically activating NNK or N'-nitrosonornicotine to intermediates which bind to cellular macromolecules and are, therefore, at potentially higher risk for cancer development. The application of these biomarkers to studies on cancer induction by tobacco products is discussed.
Download full-text PDF |
Source |
---|
Proc Natl Acad Sci U S A
February 2025
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510050, China.
Chromobox 2 (CBX2), a crucial component of the polycomb repressive complex (PRC), has been implicated in the development of various human cancers. However, its role in the regulation of tumor immunogenicity and immune evasion remains inadequately understood. In this study, we found that ablation of CBX2 led to tumor growth inhibition, activation of the tumor immune microenvironment, and enhanced therapeutic efficacy of anti-PD1 or adoptive T cell therapies by using murine syngeneic tumor models.
View Article and Find Full Text PDFCirc Res
January 2025
Division of Cardiovascular Medicine, Department of Medicine (J.B.H., J.D.B., A.C.D.), Vanderbilt University Medical Center, Nashville, TN.
Cardiovascular and cardiometabolic diseases are leading causes of morbidity and mortality worldwide, driven in part by chronic inflammation. Emerging research suggests that the bone marrow microenvironment, or marrow niche, plays a critical role in both immune system regulation and disease progression. The bone marrow niche is essential for maintaining hematopoietic stem cells (HSCs) and orchestrating hematopoiesis.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands.
Sci Rep
January 2025
School of Sports and Health, Nanjing Sport Institute, Nanjing, China.
A high-calorie diet and lack of exercise are the most important risk factors contributing to metabolic dysfunction-associated steatotic liver disease (MASLD) initiation and progression. The precise molecular mechanisms of mitochondrial function alteration during MASLD development remain to be fully elucidated. In this study, a total of 60 male C57BL/6J mice were maintained on a normal or amylin liver NASH (AMLN) diet for 6 or 10 weeks.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
Spinal cord injury (SCI) is a serious trauma of the central nervous system (CNS). SCI induces a unique lipid-dense environment that results in the deposition of large amounts of lipid droplets (LDs). The presence of LDs has been shown to contribute to the progression of other diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!