The Oxytricha telomere protein specifically recognizes single-stranded telomeric DNA, forming an extremely salt resistant and kinetically stable nucleoprotein complex. The absence of information on how this heterodimeric protein binds to DNA prompted this photo-cross-linking study. Multiple protein-DNA photo-cross-links are formed upon UV irradiation of Oxytricha telomeres reconstituted with a synthetic oligonucleotide terminating in 5'-T16T15T14T13G12G11G10G9T8T7T6T5G4G3G2G1-3'. Site-specific substitution of certain nucleotides with 5-bromodeoxyuridine (BrdU) greatly increased the photo-cross-linking yield, each substitution favoring a specific protein-DNA cross-link. For example, substitution of BrdU for T7 resulted in 25% cross-linking of the bound DNA, a 10-fold increase over the unsubstituted DNA. Both subunits of the telomere protein cross-link to, and are therefore near, the DNA. Three point contacts within this nucleoprotein complex, involving the alpha subunit, were established using BrdU substitution: Tyr239, Tyr142, and His292 cross-link to G3, T15, and T7, respectively. One photo-cross-link, Tyr239-G3, occurs amid a short acidic stretch of the alpha subunit, counter to expectations for amino acids that approach the polyanionic DNA. The two remaining cross-links are to amino acids in hydrophobic regions of the primary polypeptide sequence, consistent with the hypothesis that hydrophobic interactions account for the salt resistance (> 2 M NaCl) of this protein-DNA complex. These two photo-cross-links suggest that the telomere protein may bind telomeric single-stranded DNA by intercalation of aromatic residues into a nucleotide lattice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi00177a030 | DOI Listing |
Circ Res
January 2025
Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA. (R.A.C., C.C.C., R.W., A.C., C.B., C.R., W.J.M., M.J. Bashline, A.P., A.M.P., P.B., M.J. Brown, C.S.H.).
Background: Calcific aortic valve disease is the pathological remodeling of valve leaflets. The initial steps in valve leaflet osteogenic reprogramming are not fully understood. As TERT (telomerase reverse transcriptase) overexpression primes mesenchymal stem cells to differentiate into osteoblasts, we investigated whether TERT contributes to the osteogenic reprogramming of valve interstitial cells.
View Article and Find Full Text PDFNat Commun
January 2025
Instituto de Biología Funcional y Genómica, Zacarías González 2, Salamanca, 37007, Spain.
Accurate gametogenesis requires the establishment of the telomere bouquet, an evolutionarily conserved, 3D chromosomal arrangement. In this spatial configuration, telomeres temporarily aggregate at the nuclear envelope during meiotic prophase, which facilitates chromosome pairing and recombination. The mechanisms governing the assembly of the telomere bouquet remain largely unexplored, primarily due to the challenges in visualizing and manipulating the bouquet.
View Article and Find Full Text PDFTrials
January 2025
School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
Background: Alzheimer's disease is caused by modifiable and non-modifiable risk factors. Randomised controlled trials have investigated whether the strongest genetic risk factor for Alzheimer's disease, APOE4, impacts the effectiveness of exercise on health. Systematic reviews are yet to evaluate the effect of exercise on physical and cognitive outcomes in APOE genotyped participants.
View Article and Find Full Text PDFJ Anim Sci Biotechnol
January 2025
Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
Background: Chickens and ducks are vital sources of animal protein for humans. Recent pangenome studies suggest that a single genome is insufficient to represent the genetic information of a species, highlighting the need for more comprehensive genomes. The bird genome has more than tens of microchromosomes, but comparative genomics, annotations, and the discovery of variations are hindered by inadequate telomere-to-telomere level assemblies.
View Article and Find Full Text PDFSmall Methods
January 2025
Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
The clustered regularly interspaced short palindromic repeat (CRISPR)-associated system has displayed promise in visualizing the dynamics of target loci in living cells, which is important for studying genome regulation. However, developing a cell-friendly and rapid transfection method for achieving dynamic and long-term genomic imaging in living cells with high specificity and accuracy is still challenging. Herein, a robust and versatile method is presented that employs a barrel-shaped DNA nanostructure (TUBE) modified with aptamers for loading, protecting, and delivering CRISPR-Cas9 to visualize specific genomic loci in living cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!