Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The single excitor motoneuron to the limb opener muscle in the crayfish Procambarus clarkii provides multiterminal innervation to individual muscle fibers. At low impulse frequencies, these neuromuscular synapses generate a threefold larger junctional potential in fibers of the proximal region of the muscle compared to those in the central region. Focal extracellular recording from synapse-bearing "boutons" showed more quantal release at low frequencies in the proximal region. Structural correlates for the physiological differences were sought. Fluorescence microscopy of surface innervation stained with a vital fluorescent dye, 4-Di-2-Asp, showed that density of innervation was not greater in the proximal region and thus could not account for the overall differences in synaptic strength. Freeze fracture studies showed that the intramembrane organization of excitatory synapses and their active zones was qualitatively similar in proximal and central sites. Serial section electron microscopy of several innervation sites in proximal and central regions showed homogeneity in number and size of synapses. However, presynaptic dense bars (at release sites, or active zones) were longer and occurred at a higher density in proximal than in central synapses. The differences in number and length of presynaptic dense bars correlate positively with the differences in synaptic strength represented by junctional potential amplitudes and quantal contents of individual surface recording sites. Since many individual proximal synapses have multiple dense bars, co-operativity among these may serve to enhance transmitter output. It is concluded that occurrence of dense bars is a significant presynaptic correlate of synaptic strength in this neuron.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/syn.890160106 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!