This paper examines different technics of emulsifying systems formulation: those using the research of HLBc and those using the phase diagram. The comparison of these two methods of formulation permits us to describe one method looking for the HLBc of each proportions of the phase diagram. So a volume is determined allowing to choose more securely the surfactants proportions and also to end on surer formulation.
Download full-text PDF |
Source |
---|
J Colloid Interface Sci
January 2025
Institute of Physical and Theoretical Chemistry, University of Regensburg D-93053 Regensburg, Germany. Electronic address:
Hypothesis: Due to its huge polar headgroup, octaoxyethylene octyl ether carboxylic acid (CECHCOOH = Akypo LF2™) is supposed not to be able to change its curvature sufficiently to form bicontinuous microemulsions. Instead, upon adding an oil to the binary water - surfactant system, excess oil could be squeezed out or a biliquid foam could form.
Experiments: An auto-dilution setup was used to record small-angle X-ray scattering data along six dilution lines in the newly established phase diagram of the ternary system 2-ethylhexanol - CECHCOOH - water.
Phys Chem Chem Phys
January 2025
MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Functional Materials and Mesoscopic Physics, School of Physics, Xi'an Jiaotong University, 710049, Xi'an, Shaanxi, P. R. China.
Exploration of new superconducting or superhard transition-metal borides has attracted extensive interest in the past few decades. In this study, we conducted comprehensive theoretical investigations in the scandium-boron binary system by employing a structural search method based upon first-principles density functional theory. Among the six predicted superconducting scandium-borides, ScB (3̄) has the highest superconducting transition temperature = 12.
View Article and Find Full Text PDFSoft Matter
January 2025
Division of Physical Chemistry, Department of Chemistry, Lund University, PO Box 124, SE-221 00 Lund, Sweden.
Attempts to use colloid science concepts to better understand the dynamic properties of concentrated or crowded protein solutions are challenging due to the fact that globular proteins generally have heterogeneous surfaces that result in anisotropic or patchy contributions to their interaction potential. This is particularly difficult when targeting non-equilibrium transitions such as glass and gel formation in concentrated protein solutions. Here we report a systematic study of the reduced zero shear viscosity of the globular protein -crystallin, an eye lens protein that plays a vital role in vision-related phenomena such as cataract formation or presbyopia, and compare the results to the existing structural and dynamic data.
View Article and Find Full Text PDFCrit Rev Ther Drug Carrier Syst
January 2025
Associate Professor of Pharmaceutics, Faculty of Health and Allied Sciences, Amity University Noida India, Pharmaceutics Domain, Uttar Pradesh, India; Member, Indian National Young Academy of Sciences (INYAS), INSA, New Delhi, India.
Microemulsions (MEs) are homogeneous, isotropic, transparent, and thermodynamically stable mixtures of water, oil, and surfactants. Their unique properties have garnered increasing interest across various fields, including chemistry, pharmacology, biotechnology, and biology. This review aims to provide a comprehensive overview of ME compositions, their macroscopic appearances, and the roles of their essential components - oil, water, surfactant, and co-surfactant - in controlling the nature and stability of MEs.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
The Pd-Zn γ-brass phase provides exciting opportunities for synthesizing site-isolated catalysts with precisely controlled Pd active site ensembles. Introducing a third metallic element into the γ-brass lattice further perturbs the catalytic active site ensembles. Here, we introduce coinage metallic elements M (M = Cu, Ag, and Au) into the Pd-Zn γ-brass phase and investigate the site occupation factors of each element in the γ-brass lattice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!