A mutant strain of Azotobacter sp. GP1 converted 4-chlorophenol to 4-chlorocatechol under cometabolic conditions. Under the same conditions the wild-type strain accumulated a yellow compound, which by chemical and spectroscopic methods was identified as 5-chloro-2-hydroxy-6-oxohexadienoic acid (5-chloro-2-hydroxy-muconic semialdehyde). The structure of this compound indicates a meta-proximal cleavage of 4-chlorocatechol.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-6968.1994.tb06678.xDOI Listing

Publication Analysis

Top Keywords

azotobacter gp1
8
metabolism 4-chlorophenol
4
4-chlorophenol azotobacter
4
gp1 structure
4
structure meta
4
meta cleavage
4
cleavage product
4
product 4-chlorocatechol
4
4-chlorocatechol mutant
4
mutant strain
4

Similar Publications

Purification and catalytic properties of the chlorophenol 4-monooxygenase from Burkholderia cepacia strain AC1100.

Biochim Biophys Acta

June 2001

Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université René Descartes, Paris V, 45 rue des Saints Pères, 75270 Cedex 06, Paris, France.

Burkholderia cepacia strain AC1100 can be induced for the degradation of 2,4,5-trichlorophenol (2,4,5-TCP). We have purified the active enzyme 30-fold to apparent homogeneity with a 44% yield by a two-step chromatographic procedure, and showed that it consists of a single type of subunit of 59 kDa based on SDS-PAGE using Coomassie blue and Sypro staining. This enzyme has no bound prosthetic group but requires exogenous addition of FAD and NADH to perform the dioxygen-dependent hydroxylation in the 4-position of 2,4,6-TCP.

View Article and Find Full Text PDF

The enzyme which catalyzes the dehalogenation of 2,4,6-trichlorophenol (TCP) was purified to apparent homogeneity from an extract of TCP-induced cells of Azotobacter sp. strain GP1. The initial step of TCP degradation in this bacterium is inducible by TCP; no activity was found in succinate-grown cells or in phenol-induced cells.

View Article and Find Full Text PDF

Hydroxyquinol 1,2-dioxygenase was purified from cells of the soil bacterium Azotobacter sp. strain GP1 grown with 2,4,6-trichlorophenol as the sole source of carbon. The presumable function of this dioxygenase enzyme in the degradative pathway of 2,4,6-trichlorophenol is discussed.

View Article and Find Full Text PDF

The enzyme which cleaves the benzene ring of 6-chlorohydroxyquinol was purified to apparent homogeneity from an extract of 2,4,6-trichlorophenol-grown cells of Streptomyces rochei 303. Like the analogous enzyme from Azotobacter sp. strain GP1, it exhibited a highly restricted substrate specificity and was able to cleave only 6-chlorohydroxyquinol and hydroxyquinol and not catechol, chlorinated catechols, or pyrogallol.

View Article and Find Full Text PDF

A mutant strain of Azotobacter sp. GP1 converted 4-chlorophenol to 4-chlorocatechol under cometabolic conditions. Under the same conditions the wild-type strain accumulated a yellow compound, which by chemical and spectroscopic methods was identified as 5-chloro-2-hydroxy-6-oxohexadienoic acid (5-chloro-2-hydroxy-muconic semialdehyde).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!