In a previous report the dependence of the antimycoplasmal activity of bipyridyl analogues on the presence of Cu+ ions has been shown. The inhibitory activity of these compounds has now been studied against Escherichia coli mycobacteria and Candida albicans in the absence and presence of Cu2+ ions using growth kinetic techniques. It was found that the inhibitory activity against E. coli increases in the presence of Cu2+ ions. In contrast, no additional effect of Cu2+ ions is observed for the inhibitory activity against mycobacteria. Some of the derivatives show very promising activity even against Mycobacterium avium strains. More complicated is the effect of Cu2+ ions on the inhibitory activity of the derivatives against C. albicans. For isoquinolones the observed delay in onset of inhibitors is reduced and no influence on the inhibitory activity is observed. The addition of Cu2+ ions to the phenanthrolines leads in contrast to a decrease in antifungal activity. The possible influence of membrane properties of the studied microorganism on the effect of Cu2+ ions is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000239183DOI Listing

Publication Analysis

Top Keywords

inhibitory activity
24
cu2+ ions
24
activity
9
influence membrane
8
bipyridyl analogues
8
ions inhibitory
8
presence cu2+
8
ions
7
inhibitory
6
cu2+
6

Similar Publications

Designing binders to target undruggable proteins presents a formidable challenge in drug discovery. In this work, we provide an algorithmic framework to design short, target-binding linear peptides, requiring only the amino acid sequence of the target protein. To do this, we propose a process to generate naturalistic peptide candidates through Gaussian perturbation of the peptidic latent space of the ESM-2 protein language model and subsequently screen these novel sequences for target-selective interaction activity via a contrastive language-image pretraining (CLIP)-based contrastive learning architecture.

View Article and Find Full Text PDF

The viral protein mutations can modify virus-host interactions during virus evolution, and thus alter the extent of infection or pathogenicity. Studies indicate that nucleocapsid (N) protein of SARS-CoV-2 participates in viral genome assembly, intracellular signal regulation and immune interference. However, its biological function in viral evolution is not well understood.

View Article and Find Full Text PDF

Injectable, Biodegradable and Photothermal Hydrogel with Quorum Sensing Inhibitory Effects for Subcutaneous Fungal Infection Treatment.

ACS Appl Mater Interfaces

January 2025

Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.

Owing to the high invasion depth and easy formation of biofilms, the treatment of subcutaneous fungal infection is intractable and challenging. Herein, we report an injectable and biodegradable hydrogel with bactericidal, quorum sensing inhibition and antioxidant activities for the in situ treatment of subcutaneous fungal infection. The hydrogel (BEPE) was constructed by irradiating mixed bovine serum albumin (BSA), ε-polylysine and epigallocatechin gallate (EGCG)-loaded mesoporous polydopamine (PDA) under near-infrared (NIR) light.

View Article and Find Full Text PDF

Volatile oils (VOs), synonymously termed essential oils (EOs), are highly hydrophobic liquids obtained from aromatic plants, containing diverse organic compounds for example terpenes and terpenoids. These oils exhibit significant neuroprotective properties, containing antioxidant, anti-inflammatory, anti-apoptotic, glutamate activation, cholinesterase inhibitory action, and anti-protein aggregatory action, making them potential therapeutic agents in managing neurodegenerative diseases (NDs). VOs regulate glutamate activation, enhance synaptic plasticity, and inhibit oxidative stress through the stimulation of antioxidant enzymes.

View Article and Find Full Text PDF

Cultivable microbial communities associated with plants inhabiting extreme environments have great potential in biotechnological applications. However, there is a lack of knowledge about these microorganisms from Bryophyllum pinnatum (which survives in severely barren soil) and their ability to promote plant growth. The present study focused on the isolation, identification, biochemical characterization, and potential applications of root endophytic bacteria and rhizosphere bacteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!