The Lymphapress, a pneumatic sequential intermittent device is recognized as one of the most effective conservative treatments for lymphoedema, due to its effective 'milking mechanism'. This led us to hypothesize that accelerated removal of fatigue-causing metabolites by mechanical massage could improve an athlete's performance capacity. We conducted trials with 11 men who exercised at a constant workload, on a cycle ergometer, until exhaustion. During a 20-min recovery period a new modified pneumatic sequential intermittent device (the MISPD) was applied to the subjects' legs. The men then performed a second constant load exercise bout. Cardiorespiratory parameters were measured during exercise and blood was withdrawn during recovery for the determination of lactate, pyruvate, ammonia, bicarbonate and pH. No difference was found in the blood levels of the 'fatigue causing metabolites' during passive recovery (PR) and recovery with the MISPD (MR). However, the MISPD effected a 45% improvement in the subjects' ability to perform the subsequent exercise bout. The accumulation of fluid in the interstitial space after exercise and its disappearance after the use of the MISPD offers one possible explanation for these results, although psychological effects cannot be discounted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1332015PMC
http://dx.doi.org/10.1136/bjsm.27.4.255DOI Listing

Publication Analysis

Top Keywords

exercise bout
12
device mispd
8
pneumatic sequential
8
sequential intermittent
8
intermittent device
8
exercise
6
mispd
5
effects modified
4
modified intermittent
4
intermittent sequential
4

Similar Publications

Aims: This study was designed to compare the effectiveness of a single subcutaneous (s.c.) glucagon dose versus the same total dose split into a dose before and after and placebo (PBO) in preventing exercise-induced hypoglycaemia in adults with type 1 diabetes (T1D).

View Article and Find Full Text PDF

Introduction: Chronic exercise has been linked to structural and functional changes in the hippocampus and surrounding areas. However, less is known about how a single session of exercise can induce immediate effects that may contribute to these longterm changes.

Objective/methods: Resting-state fMRI was used to investigate changes in brain networks 19 minutes after a 20-minute bout of vigorous-intensity acute exercise.

View Article and Find Full Text PDF

Proximal limb cuff inflation to 40% arterial occlusion pressure (AOP) is assumed to reduce exercising leg perfusion, creating "blood flow restriction" (BFR). However, no study has validated this assumption. 18 healthy young participants (9F) performed two-legged knee flexion/extension exercise at 25% WRpeak with bilateral cuffs applied to the proximal thigh at 0% AOP (CTL), 20% AOP and 40% AOP.

View Article and Find Full Text PDF

Aerobic exercise (AE) is associated with a significant hypoglycemia risk in individuals with type 1 diabetes mellitus (T1DM). However, the mechanisms in the liver and skeletal muscle governing exercise-induced hypoglycemia in T1DM are poorly understood. This study examined the effects of a 60-minute bout of AE on hepatic and muscle glucose metabolism in T1DM rats.

View Article and Find Full Text PDF

Extensive research has demonstrated endurance exercise to be neuroprotective. Whether these neuroprotective benefits are mediated, in part, by hepatic ketone production remains unclear. To investigate the role of hepatic ketone production on brain health during exercise, healthy 6-month-old female rats underwent viral knockdown of the rate-limiting enzyme in the liver that catalyses the first reaction in ketogenesis: 3-hydroxymethylglutaryl-CoA synthase 2 (HMGCS2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!