The INO2 locus encodes a novel product showing structural similarity to the basic helix-loop-helix (b-HLH) family of regulatory proteins (Nikoloff, D.M., McGraw, P., and Henry, S.A. (1992) Nucleic Acids Res. 20, 3253). The ino2 mutants exhibit pleiotropic defects in phospholipid metabolism including inability to derepress the biosynthetic enzyme inositol-1-phosphate synthase. Localization of mutations in ino2 strains has demonstrated that the b-HLH domain is required for biological activity and is sensitive to perturbation, thereby establishing a correlation between the structure and function of Ino2p. Defects in the b-HLH domain of Ino2p resulted in reduced DNA binding activity. In addition, the absence of a specific DNA-protein complex correlated with a reduction or loss of INO1 transcription. Studies using Ino2p-specific antibody revealed that Ino2p participates in the formation of specific DNA-protein complexes. Ino2p-dependent binding activity overlapped with a region of the INO1 promoter that contains two potential HLH consensus binding sites. Furthermore, Ino2p showed single base pair discrimination in a putative binding site, establishing a relationship between Ino2p and its target binding site.

Download full-text PDF

Source

Publication Analysis

Top Keywords

b-hlh domain
8
binding activity
8
specific dna-protein
8
binding site
8
ino2p
5
binding
5
functional characterization
4
ino2
4
characterization ino2
4
ino2 gene
4

Similar Publications

Cyclin D2 (CCND2) stabilization underpins a range of macrocephaly-associated disorders through mutation of CCND2 or activating mutations in upstream genes encoding PI3K-AKT pathway components. Here, we describe three individuals with overlapping macrocephaly-associated phenotypes who carry the same recurrent de novo c.179G>A (p.

View Article and Find Full Text PDF

Background: Aryl hydrocarbon receptor nuclear translocator-like 2 (ARNTL2) belongs to the b HLH- PAS domain transcription factor family and is one of the key clock genes that control the circadian rhythm. ARNTL2 plays an important role in human biological functions. However, its role in various tumors, especially in the tumor immune microenvironment (TIME) and immunotherapy, remains unclear.

View Article and Find Full Text PDF

Methods of Expression, Purification, and Preparation of the c-Myc b-HLH-LZ for Its Biophysical Characterization.

Methods Mol Biol

August 2021

Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke et PROTÉO, Université de Sherbrooke, Sherbrooke, QC, Canada.

The b-HLH-LZ domain of c-Myc is a key target for the development of cancer therapies by blunting its binding to DNA with cell penetrant b-HLH-LZs and/or by stabilizing it into a state that cannot recognize Max to activate and amplify transcription of oncogenic genes. Although recent milestones have been reached with DNA binding blunting of c-Myc with the cell penetrant b-HLH-LZ Omomyc, the targeting of its b-HLH-LZ with small molecules, peptides, or proteins is lagging. As reviewed recently, the main problem relies in the intrinsically disordered nature of the b-HLH-LZ of c-Myc.

View Article and Find Full Text PDF

Upstream stimulatory factors are kinds of multi-functional transcription factors, which are expressed in eukaryotes widely, including Upstream stimulatory factor 1 (USFl) and upstream stimulatory factor 2 (USF2). USF protein has a typical basic helix-loop-helix leucine zipper (b-HLH-LZ) structure, which is involved in cell cycle, cell proliferations, glucose and lipid metabolism, and other biochemical processes. Although the USF family is an important regulator of cellular processes, little is known about the USF genes of lampreys, especially their evolutionary relationships, expression profiles, and biological functions.

View Article and Find Full Text PDF

Prolonged or enhanced expression of the proto-oncogene Lmo2 is associated with a severe form of T-cell acute lymphoblastic leukemia (T-ALL), designated early T-cell precursor ALL, which is characterized by the aberrant self-renewal and subsequent oncogenic transformation of immature thymocytes. It has been suggested that Lmo2 exerts these effects by functioning as component of a multi-subunit transcription complex that includes the ubiquitous adapter Ldb1 along with b-HLH and/or GATA family transcription factors; however, direct experimental evidence for this mechanism is lacking. In this study, we investigated the importance of Ldb1 for Lmo2-induced T-ALL by conditional deletion of Ldb1 in thymocytes in an Lmo2 transgenic mouse model of T-ALL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!