More than 50 mutations in the human hypoxanthine-guanine phosphoribosyltransferase (HPRT) locus have been described, yet only 2 alter the AUG initiation codon. One, variant HPRT1151, results in Lesch-Nyhan syndrome (LNS), and the other, HPRTIllinois, results in partial HPRT deficiency. Although previously undetectable, we used a sensitive gel assay to demonstrate that HPRTIllinois is not only active, but has a native Mr indistinguishable from normal. Confirmatory evidence of activity and native Mr is demonstrated following transfection of HPRT cells with expression plasmids containing cDNA sequences representing HPRTIllinois. These data provide support for the hypothesis that patient RT, or variant HPRTIllinois, is spared manifestations of the LNS as a result of translation at the newly formed GUG initiation codon.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00212027DOI Listing

Publication Analysis

Top Keywords

initiation codon
12
gug initiation
8
hprtillinois
5
base pair
4
pair deletion
4
deletion exon
4
exon hprtillinois
4
hprtillinois forms
4
forms functional
4
functional gug
4

Similar Publications

mRNA display is an effective tool to identify high-affinity macrocyclic binders for challenging protein targets. The success of an mRNA display selection is dependent on generating highly diverse libraries with trillions of peptides. While translation elongation can canonically accommodate the 61 proteinogenic triplet codons, translation initiation is restricted to the native start codon AUG.

View Article and Find Full Text PDF

Background: TG02 is a peptide-based cancer vaccine eliciting immune responses to oncogenic codon 12/13 mutations. This phase 1 clinical trial (NCT02933944) assessed the safety and immunological efficacy of TG02 adjuvanted by GM-CSF in patients with -mutant colorectal cancer.

Methods: In the interval between completing CRT and pelvic exenteration, patients with resectable mutation-positive, locally advanced primary or current colorectal cancer, received 5-6 doses of TG02/GM-CSF.

View Article and Find Full Text PDF

40S ribosomal subunits scan mRNA for the start codon by one-dimensional diffusion.

bioRxiv

January 2025

Department of Biochemistry & Biophysics at the School of Medicine and Dentistry & Center for RNA Biology, University of Rochester, Rochester, NY, USA.

During eukaryotic translation initiation, the small (40S) ribosomal subunit is recruited to the 5' cap and subsequently scans the 5' untranslated region (5' UTR) of mRNA in search of the start codon. The molecular mechanism of mRNA scanning remains unclear. Here, using GFP reporters in cells, we show that order-of-magnitude variations in the lengths of unstructured 5' UTRs have a modest effect on protein synthesis.

View Article and Find Full Text PDF

Background: Variants in the gene, encoding guanosine triphosphate cyclohydrolase, are associated with dopa-responsive dystonia (DRD) and are considered risk factors for parkinson's disease.

Methods: Comprehensive neurological assessments documented motor and non-motor symptoms in a Chinese family affected by DRD. Whole-exome sequencing (WES) was employed to identify potential mutations, with key variants confirmed by Sanger sequencing and analyzed for familial co-segregation.

View Article and Find Full Text PDF
Article Synopsis
  • Species in the Echeneidae family are known for their ability to attach to hosts using a sucking disc; this study analyzed the mitochondrial genomes of three such species.
  • The mitochondrial genomes varied slightly in length and contained essential genes for protein coding, rRNA, tRNA, and a D-loop region, with most genes demonstrating specific patterns in their codon usage and genetic structure.
  • Phylogenetic analysis revealed distinct relationships among the species, with one species forming its own group and the others being closely related, thus adding valuable data to the understanding of this fish family's classification.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!