N-cadherin, a member of the Ca(2+)-dependent cell adhesion molecule family plays essential roles in morphogenesis and histogenesis. N-cadherin has been shown in vitro to promote myoblast fusion and neurite outgrowth. We report here the cellular localization of N-cadherin during development and regeneration of the chick neuromuscular system. N-cadherin was uniformly expressed along the surface of myoblasts and myotubes of E6 limb muscles. Later, as synaptogenesis and secondary myogenesis proceeded, N-cadherin expression was down-regulated and restricted to some large-diameter fibres, then to the areas of contact between few myofibres and subsequently disappeared by embryonic day 17, suggesting that this cadherin may be implicated predominantly in fusion of primary myoblasts and, at lower degree, of secondary myoblasts. The presence of N-cadherin in muscle during the period of nerve trunk ingrowth and its down-regulation after synaptogenesis suggests that this molecule might be implicated in both processes. N-cadherin became accumulated at the neuromuscular junction only a few days after the first synaptic contacts were established and remained at the adult neuromuscular junction, suggesting a role of this molecule in the stabilization of the mature neuromuscular junction. In sciatic nerve, the level of N-cadherin expression remained unchanged from hatching to adult life. N-cadherin was widely distributed on the surface of myelinated fibres and on myelinating Schwann cells: in addition, it was concentrated at the node of Ranvier. At the ultrastructural level, the molecule was detected inside, at the surface and in the basal lamina of Schwann cells and also associated with endoneurial collagen. These observations suggest a role of N-cadherin in the structuring and stabilization of the myelin sheaths. After nerve injury, N-cadherin continued to be expressed by proliferating Schwann cells in the distal stump providing a substratum for regenerating axons. N-cadherin reappeared at the surface of denervated muscle fibres without disappearing from the former synaptic sites. It was detected not only in the sarcoplasm and on sarcolemma of denervated muscle fibres, but also in the basal lamina and in the extracellular matrix. The reexpression of N-cadherin at the surface of denervated muscle fibres suggests a role for this molecule in muscle reinnervation. The presence of N-cadherin in basal lamina and its association with collagen fibres raise questions about the release of N-cadherin in the extracellular space and the existence of a putative heterophilic ligand for N-cadherin.

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.120.1.1DOI Listing

Publication Analysis

Top Keywords

n-cadherin
17
neuromuscular junction
16
n-cadherin expression
12
schwann cells
12
basal lamina
12
denervated muscle
12
muscle fibres
12
neuromuscular system
8
node ranvier
8
presence n-cadherin
8

Similar Publications

Monotropein (Mon) is an iridoid glycosides extracted from Morinda officinalis F.C. How.

View Article and Find Full Text PDF

Tetraspanins 10 and 15 support Venezuelan equine encephalitis virus replication in astrocytoma cells.

Mol Biol Cell

January 2025

Institute for Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany.

Tetraspanins (Tspans) are transmembrane proteins that coordinate life cycle steps of viruses from distinct families. Here, we identify the human Tspan10 and Tspan15, both members of the TspanC8 subfamily, as replication factors for alphavirus Venezuelan equine encephalitis virus (VEEV) in astrocytoma cells. Pharmacological inhibition and siRNA-mediated silencing of TspanC8 interactor a disintegrin and metalloproteinase 10 (ADAM10) reduced VEEV infection.

View Article and Find Full Text PDF

Background: Immune cells within tumor tissues play important roles in remodeling the tumor microenvironment, thus affecting tumor progression and the therapeutic response. The current study was designed to identify key markers of plasma cells and explore their role in high-grade serous ovarian cancer (HGSOC).

Methods: We utilized single-cell sequencing data from the Gene Expression Omnibus (GEO) database to identify key immune cell types within HGSOC tissues and to extract related markers via the Seurat package.

View Article and Find Full Text PDF

Background/purpose: Revascularization procedures are used over apexification to treat teeth with necrotic pulp tissues and incomplete root formation. Clinically, inducing proliferation, migration, matrix deposition, and differentiation of stem cells from apical papilla (SCAPs) are critical for pulp regeneration. The study aimed to elucidate the impact of bone morphogenetic protein-4 (BMP-4) on plasminogen activation molecules and the osteogenic/odontogenic differentiation of SCAPs, as well as understand the related signaling mechanisms.

View Article and Find Full Text PDF

Background: Unraveling the pathogenesis of colorectal cancer (CRC) can aid in developing prevention and treatment strategies. Aurora kinase A (AURKA) is a key participant in mitotic control and interacts with its co-activator, the targeting protein for Xklp2 (TPX2) microtubule nucleation factor. AURKA is associated with poor clinical outcomes and high risks of CRC recurrence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!