Rat neonatal myocytes exposed to 2.5 mM CaCN and 20 mM 2-deoxyglucose at pH 6.2 (chemical hypoxia) quickly lose viability when pH is increased to 7.4, with or without washout of inhibitors--a 'pH paradox'. In this study, we evaluated the effect of two Na+/H+ exchange inhibitors (dimethylamiloride and HOE694) and a Na+/Ca2+ exchange inhibitor (dichlorobenzamil) on pH-dependent reperfusion injury. Intracellular free Ca2+ and electrical potential were monitored by laser scanning confocal microscopy of rat neonatal cardiac myocytes grown on coverslips and co-loaded with Fluo-3 and tetramethylrhodamine methylester. After 30-60 min of chemical hypoxia at pH 6.2, mitochondria depolarized and Ca2+ began to increase uniformly throughout the cell. Free Ca2+ reached levels estimated to exceed 2 microM by 4 h. Washout of inhibitors at pH 7.4 (reperfusion), with or without dichlorobenzamil, killed most cells within 60 min, despite a marked reduction of Ca2+ in dichlorobenzamil-treated cells. Reperfusion at pH 7.4 in the presence of 75 microM dimethylamiloride or 20 microM HOE694, or at pH 6.2, prevented cell death. HOE694-treated cells placed into culture medium recovered mitochondrial membrane potential. In most cells, this occurred before normal Ca2+ was restored. Contracted myocytes re-extended over a 24-h-period. By 48 hours, most cells contracted spontaneously and showed normal Ca2+ transients. Our results indicate that Na+/H+ exchange inhibition protects against pH-dependent reperfusion injury and facilitates full recovery of cell function.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00795410DOI Listing

Publication Analysis

Top Keywords

na+/h+ exchange
12
reperfusion injury
12
rat neonatal
12
neonatal myocytes
8
chemical hypoxia
8
ph-dependent reperfusion
8
free ca2+
8
normal ca2+
8
ca2+
6
reperfusion
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!