Cardiopulmonary and behavioral responses to detomidine, a potent alpha 2-adrenergic agonist, were determined at 4 plasma concentrations in standing horses. After instrumentation and baseline measurements in 7 horses (mean +/- SD for age and body weight, 6 +/- 2 years, and 531 +/- 48.5 kg, respectively), detomidine was infused to maintain 4 plasma concentrations: 2.1 +/- 0.5 (infusion 1), 7.2 +/- 3.5 (infusion 2), 19.1 +/- 5.1. (infusion 3), and 42.9 +/- 10 (infusion 4) ng/ml, by use of a computer-controlled infusion system. Detomidine caused concentration-dependent sedation and somnolence. These effects were profound during infusions 3 and 4, in which marked head ptosis developed and all horses leaned heavily on the bars of the restraining stocks. Heart rate and cardiac index decreased from baseline measurements (42 +/- 7 beats/min, 65 +/- 11 ml.kg of body weight-1.min-1) in linear relationship with the logarithm of plasma detomidine concentration (ie, heart rate = -4.7 [loge detomidine concentration] + 44.3, P < 0.01; cardiac index = -10.5 [loge detomidine concentration] + 73.6, P < 0.01). Second-degree atrioventricular block developed in 5 of 7 horses during infusion 3, and in 6 of 7 horses during infusion 4. Mean arterial blood pressure increased significantly from 118 +/- 11 mm of Hg at baseline to 146 +/- 27 mm of Hg at infusion 4. Similar responses were observed for mean pulmonary artery and right atrial pressures. Systemic vascular resistance (baseline, 182 +/- 28 mm of Hg.ml-1.min-1.kg-1) increased significantly during infusions 3 and 4 (to 294 +/- 79 and 380 +/- 58, respectively). (ABSTRACT TRUNCATED AT 250 WORDS)

Download full-text PDF

Source

Publication Analysis

Top Keywords

+/- infusion
20
+/-
14
infusion
9
cardiopulmonary behavioral
8
behavioral responses
8
standing horses
8
plasma concentrations
8
baseline measurements
8
developed horses
8
heart rate
8

Similar Publications

Metabolomic in severe traumatic brain injury: exploring primary, secondary injuries, diagnosis, and severity.

Crit Care

January 2025

Department of Critical Care Medicine, Cumming School of Medicine, Health Research Innovation Center (HRIC), University of Calgary, Room 4C64, 3280 Hospital Drive N.W., Calgary, AB, T2N 4Z6, Canada.

Background: Traumatic brain injury (TBI) is a major public health concern worldwide, contributing to high rates of injury-related death and disability. Severe traumatic brain injury (sTBI), although it accounts for only 10% of all TBI cases, results in a mortality rate of 30-40% and a significant burden of disability in those that survive. This study explored the potential of metabolomics in the diagnosis of sTBI and explored the potential of metabolomics to examine probable primary and secondary brain injury in sTBI.

View Article and Find Full Text PDF

Purpose: Resting beat-to-beat blood pressure variability is a strong predictor of cardiovascular events and mortality. However, its underlying mechanisms remain incompletely understood. Given that the sympathetic nervous system plays a pivotal role in cardiovascular regulation, we hypothesized that alpha-1 adrenergic receptors (the main sympathetic receptor controlling peripheral vasoconstriction) may contribute to resting beat-to-beat blood pressure variability.

View Article and Find Full Text PDF

Donor-derived GD2-specific CAR T cells in relapsed or refractory neuroblastoma.

Nat Med

January 2025

Department of Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Bambino Gesù Children's Hospital, Rome, Italy.

Allogeneic chimeric antigen receptor (CAR) T cells targeting disialoganglioside-GD2 (ALLO_GD2-CART01) could be a therapeutic option for patients with relapsed or refractory, high-risk neuroblastoma (r/r HR-NB) whose tumors did not respond to autologous GD2-CART01 or who have profound lymphopenia. We present a case series of five children with HR-NB refractory to more than three different lines of therapy who received ALLO_GD2-CART01 in a hospital exemption setting. Four of them had previously received allogeneic hematopoietic stem cell transplantation.

View Article and Find Full Text PDF

Background: Immune effector cell-associated neurotoxicity syndrome (ICANS) can be a severe, life-threatening toxicity following CAR T-cell therapy. While currently evaluated by the immune effector cell-associated encephalopathy (ICE) score, not all patients have changes in their ICE score and not all signs and symptoms of neurotoxicity are captured.

Methods: We conducted a prospective, single center cohort pilot study to evaluate a novel, rapid neurocognitive assessment tool (CART-NS) in detecting early, subtle neurotoxicity prior to the onset of ICANS and any deterioration in the ICE score.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!