In an effort to understand the forces shaping evolution of regulatory genes and patterns, we have compared data on interspecific differences in enzyme expression patterns among the rapidly evolving Hawaiian picture-winged Drosophila to similar data on the more conservative virilis species group. Divergence of regulatory patterns is significantly more common in the former group, but cause and effect are difficult to discern. Random fixation of regulatory variants in small populations and/or during speciation may be somewhat more likely than divergence driven by selection. Within the picture-winged group, we also have compared enzymes that fulfill different metabolic roles. There are highly significant differences between individual enzymes, but no obvious correlations to functional categories.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00182745DOI Listing

Publication Analysis

Top Keywords

evolution regulatory
8
regulatory genes
8
genes patterns
8
patterns
4
patterns relationships
4
relationships evolutionary
4
evolutionary rates
4
rates metabolic
4
metabolic functions
4
functions effort
4

Similar Publications

The developmental and genetic basis of male genitalia evolution in Drosophilids.

Curr Opin Insect Sci

January 2025

Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 3109601, Israel. Electronic address:

Reproductive organs are among the most variable and rapidly evolving structures in the animal kingdom, probably due to sexual selection. In insects, the diverse morphology of male genitalia is often one of the few visible characteristics that can reliably distinguish closely related species, making it crucial for taxonomic classification. Consistent with this, males of the model organism Drosophila melanogaster and its closely related species display remarkable variations in genital morphology.

View Article and Find Full Text PDF

Adipokines regulate the development and progression of MASLD through organellar oxidative stress.

Hepatol Commun

February 2025

Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.

The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD), which is increasingly being recognized as a leading cause of chronic liver pathology globally, is increasing. The pathophysiological underpinnings of its progression, which is currently under active investigation, involve oxidative stress. Human adipose tissue, an integral endocrine organ, secretes an array of adipokines that are modulated by dietary patterns and lifestyle choices.

View Article and Find Full Text PDF

Molecular and functional convergences associated with complex multicellularity in Eukarya.

Mol Biol Evol

January 2025

Laboratório de Algoritmos em Biologia, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil.

A key trait of Eukarya is the independent evolution of complex multicellular (CM) in animals, plants, fungi, brown algae and red algae. This phenotype is characterized by the initial exaptation of cell-cell adhesion genes followed by the emergence of mechanisms for cell-cell communication, together with the expansion of transcription factor gene families responsible for cell and tissue identity. The number of cell types (NCT) is commonly used as a quantitative proxy for biological complexity in comparative genomics studies.

View Article and Find Full Text PDF

Inherited retinal diseases (IRDs) are clinically and genetically heterogeneous disorders characterized by progressive photoreceptor degeneration and irreversible vision loss. MicroRNAs (miRNAs), a class of endogenous non-coding RNAs with post-transcriptional regulatory properties, are known to play a major role in retinal function, both in physiological and pathological conditions. Given their ability to simultaneously modulate multiple molecular pathways, miRNAs represent promising therapeutic tools for disorders with high genetic heterogeneity, such as IRDs.

View Article and Find Full Text PDF

Transcription near arrested DNA replication forks triggers ribosomal DNA copy number changes.

Nucleic Acids Res

January 2025

Laboratory of Genome Regeneration, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan.

Article Synopsis
  • Sir2 is a histone deacetylase that helps maintain the stability of ribosomal RNA genes in budding yeast by preventing DNA breaks from leading to changes in rDNA copy number.
  • It does this by suppressing transcription near issues that arise during DNA replication, which can otherwise provoke double-strand breaks (DSBs) and subsequent DNA repair processes.
  • When Sir2 is absent, increased transcription can lead to DSBs, resulting in unstable rDNA copy numbers and the formation of extrachromosomal DNA, highlighting the importance of Sir2 in maintaining rDNA integrity.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!