A severe bottleneck in the size of the PV Alu subfamily in the common ancestor of human and gorilla has been used to isolate an Alu source gene. The human PV Alu subfamily consists of about one thousand members which are absent in gorilla and chimpanzee DNA. Exhaustive library screening shows that there are as few as two PV Alus in the gorilla genome. One is gorilla-specific, i.e., absent in the orthologous loci in both human and chimpanzee, suggesting the independent retrotranspositional activity of the PV subfamily in the gorilla lineage. The second of these two gorilla PV Alus is present in both human and chimpanzee DNAs and is the single PV Alu known to precede the radiation of these three species. The orthologous Alu in gibbon DNA resembles the next older Alu subfamily. Thus, this Alu locus is originally templated by a non-PV source gene and acquired characteristic PV sequence variants by mutational drift in situ, consequently becoming the first member and presumptive founder of this PV subfamily.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00182741 | DOI Listing |
BMC Genomics
December 2024
Pathology and Biomedical Science Department, University of Otago Christchurch, Christchurch, New Zealand.
Background: Anorexia nervosa (AN) is a polygenic, severe metabopsychiatric disorder with poorly understood aetiology. Eight significant loci have been identified by genome-wide association studies (GWAS) and single nucleotide polymorphism (SNP)-based heritability was estimated to be ~ 11-17, yet causal variants remain elusive. It is therefore important to define the full spectrum of genetic variants in the wider regions surrounding these significantly associated loci.
View Article and Find Full Text PDFYi Chuan
July 2024
Medical Research Center, Affiliated Hospital of Shandong Binzhou Medical University, Binzhou 256603, China.
Duchenne muscular dystrophy (DMD) is a severe X-linked recessive genetic disorder caused by mutations in the gene, which leads to a deficiency of the dystrophin protein. The main mutation types of this gene include exon deletions and duplications, point mutations, and insertions. These mutations disrupt the normal expression of dystrophin, ultimately leading to the disease.
View Article and Find Full Text PDFJ Med Genet
September 2024
Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
Sci Transl Med
January 2024
Center for Cancer Prevention and Early Detection, City of Hope, Duarte, CA 91010, USA.
We previously described an approach called RealSeqS to evaluate aneuploidy in plasma cell-free DNA through the amplification of ~350,000 repeated elements with a single primer. We hypothesized that an unbiased evaluation of the large amount of sequencing data obtained with RealSeqS might reveal other differences between plasma samples from patients with and without cancer. This hypothesis was tested through the development of a machine learning approach called Alu Profile Learning Using Sequencing (A-PLUS) and its application to 7615 samples from 5178 individuals, 2073 with solid cancer and the remainder without cancer.
View Article and Find Full Text PDFGenes (Basel)
October 2023
Institute for Genome Sciences, Department of Medicine, and Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
Three mobile element classes, namely , LINE-1 (L1), and SVA elements, remain actively mobile in human genomes and continue to produce new mobile element insertions (MEIs). Historically, MEIs have been discovered and studied using several methods, including: (1) Southern blots, (2) PCR (including PCR display), and (3) the detection of MEI copies from young subfamilies. We are now entering a new phase of MEI discovery where these methods are being replaced by whole genome sequencing and bioinformatics analysis to discover novel MEIs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!