The triazolobenzodiazepine triazolam is a central-type benzodiazepine receptor (BZR) ligand that is widely prescribed as a hypnotic agent. Triazolam produces its effects through potentiation of gamma-aminobutyric acid-mediated neurotransmission. Findings reported from in vitro binding studies showed some discrepancies concerning the pharmacological characteristics of triazolam. The present study aims to characterize in vivo the biochemical properties of triazolam, i.e., cerebral pharmacokinetics, interaction with BZR, potency, and intrinsic efficacy. Triazolam was studied in living nonhuman primates using positron emission tomography. Two different studies were carried out: (a) a direct study using [11C]triazolam and (b) an indirect competition study using the radiolabeled BZR antagonist 1C]flumazenil. Results showed that, in the brain in vivo, triazolam binds specifically and competitively to the BZR. Its rapid cerebral kinetics is consistent with a hypnotic profile (maximal binding after 23 min, elimination half-life of 202 min). Triazolam is very potent in displacing [11C]flumazenil (ID50 = 28 +/- 6 micrograms/kg). Hill analysis of the displacement curve does not show obvious binding-site heterogeneity. Triazolam is 20 times more potent in displacing [11C]flumazenil and 50 times more potent in inhibiting pentylenetetrazol-induced paroxysmal activity than the full benzodiazepine agonist diazepam. Interestingly, the simultaneous use of positron emission tomography and EEG recording allowed us to show that triazolam-positive intrinsic efficacy is slightly higher (20%) than that of diazepam. An attractive hypothesis proposes that the severity of side effects of BZR ligands is proportional to their intrinsic efficacy. Therefore, our study shows that triazolam side effects, as for other benzodiazepines, may be related to its high intrinsic efficacy in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1471-4159.1994.62031102.x | DOI Listing |
Front Cell Dev Biol
January 2025
Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
Pancreatic cancer (PC) remains one of the most lethal malignancies, primarily due to its intrinsic resistance to conventional therapies. MicroRNAs (miRNAs), key regulators of gene expression, have been identified as crucial modulators of drug resistance mechanisms in this cancer type. This review synthesizes recent advancements in our understanding of how miRNAs influence treatment efficacy in PC.
View Article and Find Full Text PDFCancer Manag Res
January 2025
Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar.
Cancer immunotherapy has transformed cancer treatment in recent years, with immune checkpoint inhibitors (ICIs) emerging as a key therapeutic approach. ICIs work by inhibiting the mechanisms that allow tumors to evade immune detection. Although ICIs have shown promising results, especially in solid tumors, patient responses vary widely due to multiple intrinsic and extrinsic factors within the tumor microenvironment.
View Article and Find Full Text PDFBMC Gastroenterol
January 2025
Department of Pediatrics, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China.
Background: The increased apoptosis of bile duct epithelial cells (BECs) due to some damage factors is considered the initiating factor in the occurrence and progression of biliary atresia (BA). Vitamin D receptor (VDR) is thought to play a crucial role in maintaining the intrinsic immune balance and integrity of bile duct epithelial cells (BECs). To investigate the role of VDRs in the pathogenesis and progression of BA using in vitro and in vivo models.
View Article and Find Full Text PDFSemin Hematol
December 2024
Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY. Electronic address:
Recent advancements in multiple myeloma (MM) treatment-including immunomodulatory drugs, proteasome inhibitors, monoclonal antibodies, and T cell-redirecting therapies like chimeric antigen receptor (CAR) T cells and bispecific antibodies (BsAbs)-have significantly improved patient outcomes. However, MM remains incurable, highlighting the need for novel therapeutic strategies. BsAbs, which simultaneously target a tumor-specific antigen and CD3 on T cells, have shown promising efficacy.
View Article and Find Full Text PDFInt J Pharm
January 2025
Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Renmin Nanlu 17, Chengdu 610041, Sichuan, China. Electronic address:
Lipid nanoparticles (LNPs) are among the most promising non-viral mRNA delivery systems for gene therapeutic applications. However, the in vivo delivery of LNP-mRNA remains challenging due to multiple intrinsic barriers that hinder LNPs from reaching their target cells. In this study, we sought to enhance LNP delivery by manipulating intrinsic regulatory mechanisms involved in their metabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!