Model biomaterial surfaces with well defined chemistry were prepared from close-packed alkyltrichlorosilane monolayers on polished silicon and glass. The outermost molecular groups which come in direct contact with the biological environment were varied across a wide range of oxidation states by employing -CF3, -CH3, -CO2CH3, and -CH2OH terminal functionalities. Characterization by contact angles, surface spectroscopy, and ellipsometry verified that these model surfaces could be repeatedly prepared with good consistency for routine use to study biomolecule adsorption onto model surfaces. Adhesion of canine endothelial cells and the adsorption of proteins (human serum albumin and human fibrinogen) as well as series of synthetic defined oligopeptides to these model surfaces have been studied. Endothelial cells attachment and growth were in the rank order of: -CH2OH > -CO2Me > -CH3 > -CF3. The peptides were comprised of different alternating sequences of lysine, leucine, and tryptophan residues. These structural differences imparted different amphiphilic characters that led to measurable differences in the adsorption of these peptides to liquid-vapor interfaces. The adsorption to model surfaces was studied using ESCA, radiometry, and concentration-dependent contact angles. ESCA and radiometry measured irreversible biomolecules adsorption whereas the contact angle method measured steady-state adsorption. Radiometric results were inconsistent with ESCA, possibly due to artifacts associated with protein radiolabeling.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.820271202DOI Listing

Publication Analysis

Top Keywords

model surfaces
20
contact angles
8
adsorption model
8
endothelial cells
8
surfaces studied
8
esca radiometry
8
model
6
surfaces
6
adsorption
6
peptide protein
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!