Increased ionic strength decreases maximal calcium-activated force (Fmax) of skinned muscle fibers via mechanisms that are incompletely understood. In detergent-skinned fibers from either rabbit (psoas) or lobster (leg or abdomen), Fmax in KCl-containing solutions was less than in potassium methanesulfonate (KMeSO3), which we showed previously was the least deleterious salt for adjusting ionic strength. In either salt, lobster fibers were considerably less sensitive to elevated ionic strength than rabbit fibers. Trimethylamine N-oxide (TMAO, a zwitterionic osmolyte found in high concentration in cells of salt-tolerant animals) increased Fmax, especially in high KCl solutions. In this regard, TMAO was more effective than a variety of other natural or synthetic zwitterions. In rabbit fibers, increasing ionic strength decreases Fmax but has little effect on contractile ATPase rate measured simultaneously using a linked-enzyme assay. Thus high salt increases the tension-cost of contraction (i.e. ratio ATPase/Fmax). At both high and low salt, TMAO decreases tension-cost. Given a simple two-state model of the cross-bridge cycle, these data indicate that ionic strength and TMAO affect the apparent detachment rate constant. High ionic strength KCl solutions extract myosin heavy- and light-chains, and troponin C from rabbit fibers. This extraction is virtually abolished by TMAO. Natural zwitterions, such as TMAO, have been shown to protect proteins against destabilization by high salt or other denaturatants. Our data indicate that, even in the best of salts, destabilization of the actomyosin complex may play a role in the effect of high ionic strength on the contractile process.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4615-2872-2_67DOI Listing

Publication Analysis

Top Keywords

ionic strength
32
rabbit fibers
12
strength
8
strength contractile
8
strength decreases
8
kcl solutions
8
high salt
8
data indicate
8
high ionic
8
fibers
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!