Rats treated with hypolipidemic agent, nafenopin (SU-13, 437) exhibit a higher plasma retention and a markedly reduced biliary excretion of organic anions, such as sulfobromophthalein (BSP) and its dibromo analog (DPSP), indocyaninegreen (ICG), succinylsulfathiazole (SST) and polar metabolites of bilirubin and the carcinogens 7, 12-dimethylbenzanthracene (DMBA) and 3,4 benzpyrene (BP), despite an increase in liver mass and a profound choleresis. However, taurocholate is not affected in this manner, which supports the idea of a transport mechanism for taurocholate that differs from that of other organic anions. A pharmacokinetic study was made for DBSP in vivo. After nafenopin treatment, primary hepatic uptake (k12) and transport from liver into bile (k23) are reduced in vivo. Infusion studies indicate that biliary transport maximum (Tm) for DBSP is also decreased although the calculated hepatic storage (S) is only moderately affected. In the isolated perfused liver, hepatic clearance and biliary excretion of BSP are reduced by two-thirds. The time course of anion transport inhibition and the hepato-biliary disposition of 14C-nafenopin suggest a direct effect of the drug. The extra liver mass induced by nafenopin appears to be hypo- or nonfunctional with respect to hepatic transport of organic anions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00510553DOI Listing

Publication Analysis

Top Keywords

organic anions
16
hepatic transport
8
transport organic
8
biliary excretion
8
liver mass
8
transport
6
liver
5
hepatic
5
nafenopin
4
nafenopin su-13437
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!