In contrast to radioimmunotherapy of solid disease, wherein the primary obstacle to success is access of radiolabeled antibody to antigen-positive cells, in the treatment of leukemia delivering a lethal absorbed dose to the isolated cell appears to be the primary obstacle. The isolated cell is defined as one that is exposed only to self-irradiation (from internalized or surface-bound radiolabeled antibody) and to irradiation from free antibody in the blood. It is isolated in the sense that the particulate (beta, electron, alpha) emissions from its nearest neighboring antigen-positive cell do not contribute to its absorbed dose. Disease in the bone marrow and other tissues, since it is confined to a smaller volume, is more easily eradicated because the absorbed dose to a given cell nucleus is enhanced by emissions from adjacent cells (a smaller fraction of the emission energy is 'wasted'). The optimization simulations presented above for the M195 antibody suggest that the optimum dose of antibody that should be administered is that required to yield a concentration within the distribution volume of the antibody that is approximately equal to the concentration of antigen sites as determined by the tumor burden. Although not specifically considered in the modeling example presented above, antibody internalization and catabolism may be expected to play an important role in radioimmunotherapy treatment planning of leukemia. Depending upon the kinetics of internalization and catabolism, the absorbed dose to the red marrow and to antigen-positive cells may be reduced considerably, since catabolism, assuming that it is followed by rapid extrusion of the radioactive label, would decrease the cells' exposure time considerably. The recently demonstrated effectiveness of radioimmunotherapy in certain cases of B-cell lymphoma and in reducing tumor burden in acute myelogenous leukemia suggests that radioimmunotherapy is beginning to fulfill the promise held when it was initially conceived. The long delay in achieving reproducible success has, in large part, been the result of the conceptual simplicity of using agents that specifically 'target' tumor cells and they may thus selectively deliver cytotoxic agents. Emboldened by this apparent simplicity, early trials of radioimmunotherapy failed to consider the many variables involved in its implementation. As has been recently demonstrated using mathematical models of antibody delivery to solid tumor, chief among these may have been the failure to select the appropriate tumor type. By significantly reducing the problems associated with antibody delivery, hematopoietic malignancies offer the optimum conditions for successful radioimmunotherapy. As evinced by the wide range of antibody and radioactivity doses administered in the B-cell lymphoma trials, the case-specific nature of radioimmunotherapy requires an understanding of the relationship between the various input parameters and patient response. The complexity and interrelationship of these parameters precludes an experimental trial-and-error approach to their optimization. A stepwise approach to radioimmunotherapy treatment planning is proposed in which a model of antibody kinetics is developed and validated.(ABSTRACT TRUNCATED AT 400 WORDS)
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4615-3076-3_3 | DOI Listing |
Sci Rep
January 2025
Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girl Branch), Cairo, Egypt.
Biosynthesized nanoparticles have a variety of applications, and microorganisms are considered one of the most ideal sources for the synthesis of green nanoparticles. Icerya aegyptiaca (Douglas) is a pest that has many generations per year and can affect 123 plant species from 49 families by absorbing sap from bark, forming honeydew, causing sooty mold, and attracting invasive ant species, leading to significant agricultural losses. The purpose of this work was to synthesize titanium dioxide nanoparticles (TiO-NPs) from marine actinobacteria and evaluate their insecticidal effects on Icerya aegyptiaca (Hemiptera: Monophlebidae), in addition to explaining their effects on protein electrophoresis analysis of SDS‒PAGE proteins from control and treated insects after 24, 72 and 120 h of exposure.
View Article and Find Full Text PDFMol Imaging Biol
January 2025
Yale PET Center, Yale School of Medicine, New Haven, USA.
Purpose: The sphingosine-1-phosphate receptor-1 (S1PR) is involved in regulating responses to neuroimmune stimuli. There is a need for S1PR-specific radioligands with clinically suitable brain pharmcokinetic properties to complement existing radiotracers. This work evaluated a promising S1PR radiotracer, [F]TZ4877, in nonhuman primates.
View Article and Find Full Text PDFJ Nucl Med
January 2025
Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
Dosimetry is integral to informed implementation of radiopharmaceutical therapies, enabling personalized treatment planning and ensuring patient safety by calculating absorbed doses to organs and tumors. As the therapeutic radiopharmaceutical field continues to expand, dosimetry software has emerged as a crucial tool for optimization of treatment efficacy. This review discusses key features and capabilities that current dosimetry software solutions have or should have in the future.
View Article and Find Full Text PDFNucl Med Commun
February 2025
Department of Radiology, Netherlands Cancer Institute- Antoni van Leeuwenhoekziekenhuis, Amsterdam, The Netherlands.
Background: Small-molecule biomacromolecules target tumor-specific antigens. They are employed as theranostic agents for imaging and treatment. Intravenous small-molecule radioligands exhibit rapid tumor uptake and excretion.
View Article and Find Full Text PDFMed J Malaysia
January 2025
Nanobiomedicine lab, Centre for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamilnadu, India.
Introduction: The biomedical potential of silver nanoparticles (Ag NPs) synthesized with Zingiber officinale and Ocimum gratissimum herbal formulation was investigated in this study. The study aims to reveal their applications in various biomedical fields. The study evaluates the antioxidant, thrombolytic, and antimicrobial potential of Zingiber officinale and Ocimum gratissimum herbal formulation-mediated Ag NPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!