Preoptic and hypothalamic neurons and the initiation of locomotion in the anesthetized rat.

Prog Neurobiol

Neuroscience and Behavior Program, Wesleyan University, Middletown, CT 06457.

Published: September 1993

Despite its insensate condition and apparent motoric depression, the anesthetized rat can provide useful information about the systems involved in locomotor initiation. The preparation appears to be particularly appropriate for the study of the appetitive locomotor systems and may be more limited for the study of the circuits involved in exploratory and defensive locomotion. In the anesthetized rat, pharmacological evidence indicates that the preoptic basal forebrain contains neurons which initiate locomotor stepping. Mapping with low levels of electrical stimulation indicates, but does not prove, that a region centered in the lateral preoptic area might be the location of these neurons. Several lines of evidence indicate that locomotor stepping elicited by electrical stimulation of the hypothalamus is mediated by neurons in the perifornical and lateral hypothalamus. Locomotor effects of hypothalamic stimulation persist in the absence of descending fibers of passage from the ipsilateral preoptic locomotor regions but are severely impaired by kainic acid lesions in the area of stimulation. Injections of glutamate into the perifornical and lateral hypothalamus elicit locomotor stepping at short latencies. Anatomical evidence suggests that the two regions are components of a network for appetitive locomotion. The recognition that multiple systems initiate locomotion both clarifies and complicates the study of locomotion. It provides a framework that incorporates disparate findings but it also underscores the need for increased attention to behavioral issues in studies of locomotor circuitry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0301-0082(93)90003-bDOI Listing

Publication Analysis

Top Keywords

anesthetized rat
12
locomotor stepping
12
locomotion anesthetized
8
locomotor
8
electrical stimulation
8
perifornical lateral
8
lateral hypothalamus
8
locomotion
5
preoptic
4
preoptic hypothalamic
4

Similar Publications

Characterization of motor nerve stimulation using sinusoidal low frequency alternating currents and cuff electrodes.

J Neural Eng

January 2025

Weldon School of Biomedical Engineering, Purdue University, 723 W. Michigan St., Indianapolis, Indiana, 46202, UNITED STATES.

Objective: Direct electrical neurostimulation using continuous sinusoidal low frequency alternating currents (LFAC) is an emerging modality for neuromodulation. As opposed to the traditional rectangular pulse stimulation, there is limited background on the characteristics of peripheral nerves responses to sinusoidal LFAC stimulation; especially within the low frequency range (<50Hz). In this study, we demonstrate LFAC activation as a means to activate motor nerves by direct bipolar nerve stimulation via cuff electrodes, and characterize the factors of activation.

View Article and Find Full Text PDF

Background: Acute systemic inflammation affects many organs and it occurs in a wide range of conditions such as acute lung injury (ALI). Inflammation-triggered oxidative pathways together with the caspase activation seen in ALI, result in apoptosis. Dapagliflozin (DPG) is an agent that is known to have oxidative stress-reducing and anti-inflammatory effects in many tissues.

View Article and Find Full Text PDF

Secondary brain damageafter traumatic brain injury (TBI) involves oxidative stress, neuroinflammation, apoptosis, and necroptosis and can be reversed by understanding these molecular pathways. The objective of this study was to examine the impact of tasimelteon (Tasi) administration on brain injury through the nuclear factor erythroid 2-related factor 2 (NRF-2)/heme oxygenase-1 (HO-1) and receptor-interacting protein kinase 1 (RIPK1)/receptor-interacting protein kinase 3 (RIPK3)/mixed lineage kinase domain-like (MLKL) pathways in rats with TBI. Thirty-two male Wistar albino rats weighing 300-350 g were randomly divided into four groups: the control group, trauma group, Tasi-1 group (trauma + 1 mg/kg Tasi intraperitoneally), and Tasi-10 group (trauma + 10 mg/kg Tasi intraperitoneally).

View Article and Find Full Text PDF

Background: Cell therapy demonstrates promising potential as a substitute therapeutic approach for liver cirrhosis. We have developed a strategy to effectively expand murine and human hepatocyte-derived liver progenitor-like cells (HepLPCs) in vitro. The primary objective of the present study was to apply HepLPCs to the treatment of liver cirrhosis and to elucidate the underlying mechanisms responsible for their therapeutic efficacy.

View Article and Find Full Text PDF

Templates for the acquisition of large datasets such as the Human Connectome Project guide the neuroimaging community to reproducible data acquisition and scientific rigor. By contrast, small animal neuroimaging often relies on laboratory-specific protocols, which limit cross-study comparisons. The establishment of broadly validated protocols may facilitate the acquisition of large datasets, which are essential for uncovering potentially small effects often seen in functional MRI (fMRI) studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!