In the normal ectocervix, mitoses are rare and are usually confined to the basal layers. In contrast, they occur more frequently in cervical intraepithelial neoplasia (CIN) and are seen at higher levels, suggesting that CIN may be associated with a progressive dysfunction in proliferative activity of cervical cells. The objective of this study was to use proliferating cell nuclear antigen (PCNA) immunohistochemistry to examine the proliferative activity of cervical epithelial cells in CIN lesions. Sixty-eight cervical biopsies were examined; 20 were totally benign, 14 had CIN I, 21 CIN II, and 13 CIN III. In benign epithelia, PCNA staining was usually confined to the basal layers, whereas in CIN the staining was seen at progressively higher levels of the epithelium. There was a statistically significant correlation between the CIN grade and the highest level of PCNA staining (PCNA grade, r = 0.746, P < 0.001). In addition, the PCNA grade showed significant correlation with the highest level at which mitoses were seen (mitosis grade, r = 0.706, P < 0.001), and a strong direct correlation between the mitosis and CIN grades was also observed (r = 0.955, P < 0.001). These data demonstrate that (1) PCNA immunoreactivity in neoplastic cervical epithelium is different from that seen in the normal cervix, suggesting that CIN is associated with a dysfunctional proliferation of cervical epithelium, (2) that there is a significant correlation between the PCNA grade and CIN grades, and (3) the "mitosis grades" have a strong correlation with the CIN grades.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/ajcp/100.1.22 | DOI Listing |
J Otol
October 2024
Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
The inner ear sensory epithelium consists of two major types of cells: hair cells (HCs) and supporting cells (SCs). Critical functions of HCs in the perception of mechanical stimulation and mechanosensory transduction have long been elucidated. SCs are indispensable components of the sensory epithelia, and they maintain the structural integrity and ionic environment of the inner ear.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Mildred Scheel Early Career Centre (MSNZ) for Cancer Research, University Hospital Würzburg, IZKF/MSNZ, Würzburg, Germany.
Oral squamous cell carcinoma (OSCC) is the most common form of head and neck cancer. The current standard for treating primary OSCC is surgical resection combined with radiotherapy and chemotherapy. Despite improved therapeutic strategies, OSCC has high rates of metastasis and mortality, with one in two patients dying of the disease.
View Article and Find Full Text PDFPLoS One
January 2025
Laboratory of Veterinary Anatomy, Tokyo University of Agriculture and Technology, Tokyo, Japan.
The red-eared sliders (Emydidae: Trachemys scripta) is characterised by a high adaptability to a variety of environment and threatens the habitat of Japanese native species. The ability to digest a variety of diets may attribute to the high adaptive capacity of this species to various environments, however, the digestive morphology remains scarcely described in red-eared sliders. In this study, we investigated the macro- and microscopic anatomy of the esophagus, stomach, small intestine, and large intestine in red-eared sliders.
View Article and Find Full Text PDFFront Oncol
December 2024
Department of Otolaryngology, Longgang Otolaryngology hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, China.
Head and neck squamous cell carcinoma (HNSCC) originates from the mucosal epithelium of the oral cavity, pharynx, and larynx, and is marked by high rates of recurrence and metastasis. Calcium signaling is associated with the progression of HNSCC and the development of drug resistance. Changes in calcium ion flow can trigger severe pathophysiological processes, including malignant transformation, tumor proliferation, epithelial-mesenchymal transition, and apoptosis evasion.
View Article and Find Full Text PDFJ Oral Biosci
December 2024
Department of Maxillofacial Orthognathics, Division of Maxillofacial and Neck Reconstruction, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45, Bunkyo-ku, Tokyo, 113-8549, Japan.
Objectives: To investigate the effects of hypoxia on tooth germ development in mice and explore the underlying mechanisms.
Methods: Tooth germs were extracted from E14.5 mouse embryos and divided into the control and hypoxia groups for organ culture.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!