CD4+ Th cell infiltration into the brain and the activation by cellular elements of the central nervous system (CNS) are thought to be important steps in the initiation of CNS autoimmune diseases. T cell activation requires Ag-specific stimulation and additional costimulatory signals provided by the APC. Here we describe how murine brain microvessel endothelial (En) cells and smooth muscle/pericytes (SM/P) selectively induce the Ag-specific activation of different Th1 and Th2 CD4+ T cell clones. Th1 and Th2 cell clones were used that were specific for the same peptide Ag in the context of the same class II allotype. SM/P preferentially activated Th1 cell clones, whereas En cells activated Th2 cell clones better, as reflected by cell proliferation and production of IL-2 by SM/P-activated Th1 clones and IL-4 by Th2 clones. There was no difference in the level of expression of CD4, CD2, or LFA-1 molecules between these Th cell clones, and anti-CD4, CD2, LFA-1 or ICAM-1 mAb did not differentially affect Ag-induced proliferation among the clones. Moreover, antibody to CD28 did not influence Ag presentation by brain microvessel En or SM/P cells to Ag-specific Th1 and Th2 clones. These results suggest that: 1) different The subsets might require different signals for their activation; 2) different APC might provide different costimulatory signals for Th cell subsets; and 3) brain microvessel En and SM/P might play a differential role in induction of autoreactive T cell responses in the CNS.
Download full-text PDF |
Source |
---|
Biotechnol J
January 2025
Biologics Process Research & Development, Merck & Co., Inc., Rahway, New Jersey, USA.
Chinese hamster ovary (CHO) cells are widely used to produce recombinant proteins, including monoclonal antibodies (mAbs), through various process modes. While fed-batch (FB) processes have been the standard, a shift toward high-density perfusion processes is being driven by increased productivity, flexible facility footprints, and lower costs. Ensuring the clearance of process-related impurities, such as host cell proteins (HCPs), is crucial in biologics manufacturing.
View Article and Find Full Text PDFAnn Hematol
January 2025
Department of Engineering for Innovation Medicine, Section of Innovation Biomedicine, Hematology Area, University of Verona, Verona, Italy.
Calreticulin (CALR) mutations are detected in around 20% of patients with primary and post-essential thrombocythemia myelofibrosis (MF). Regardless of driver mutations, patients with splenomegaly and symptoms are generally treated with JAK2-inhibitors, most commonly ruxolitinib. Recently, new therapies specifically targeting the CALR mutant clone have entered clinical investigation.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Program of Cell and Gene Therapy, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil.
Antigen recognition by CD8+ T-cell receptors (TCR) is crucial for immune responses to pathogens and tumors. TCRs are cross-reactive, a single TCR can recognize multiple peptide-Human Leukocyte Antigen (HLA) complexes. The study of cross-reactivity can support the development of therapies focusing on immune modulation, such as the expansion of pre-existing T-cell clones to fight pathogens and tumors.
View Article and Find Full Text PDFJ Thorac Dis
December 2024
Department of Radiotherapy & Oncology, Affiliated Hospital of Nantong University, Nantong, China.
Background: Esophageal squamous cell carcinoma (ESCC) stands as the sixth most common cause of cancer-related mortality on a global scale, with a strikingly high proportion-over half-of these fatalities occurring within China. The emergence of radiation resistance in ESCC patients significantly diminishes overall survival rates, complicating treatment regimens and reducing clinical outcomes. There is an urgent need to explore the molecular mechanisms that underpin radiation resistance in ESCC, which could lead to the identification of new therapeutic targets aimed at overcoming this resistance.
View Article and Find Full Text PDFBiol Methods Protoc
January 2025
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia.
Alzheimer's disease (AD) is a multifactorial systemic disease that is triggered, at least in part, by the accumulation of β-amyloid (Aβ) peptides in the brain, but it also depends on immune system-mediated regulation. Recent studies suggest that B cells may play a role in AD development and point to the accumulation of clonally expanded B cells in AD patients. However, the specificity of the clonally expanded B cells is unknown, and the contribution of Aβ-specific B cells to AD pathology development is unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!