The aim of this study was to characterize the Escherichia coli K88-specific receptors in mucus from the small intestines of 35-day-old piglets with the isogenic strains E. coli K-12(pMK005) (K88+) and E. coli K-12(pMK002) (K88-). These strains differed only in that the latter one cannot produce intact K88 fimbriae because of a deletion in the gene coding for the major fimbrial subunit. Adhesion was studied by incubating 3H-labeled bacteria with crude mucus, pronase-treated whole mucus, mucus fractionated by gel filtration, delipidated mucus, or extracted lipids immobilized in microtiter wells. In addition, E. coli strains were tested for adhesion to glycolipids extracted from mucus by overlaying glycolipid chromatograms with 125I-labeled bacteria. The recently reported finding that K88 fimbriae bind to glycoproteins in mucus from the piglet small intestine was confirmed in two ways. Pronase treatment of immobilized mucus reduced adhesion by 82%, and adhesion to delipidated mucus was 14 times greater for the K88+ than for the K88- strain. E. coli K88+ adhered to several of the fractions collected after gel filtration of crude mucus, including the void volume (M(r), > 250,000). Receptor activity specific for the K88 fimbriae was demonstrated in the lipids extracted from mucus, as the neutral lipids contained six times as much receptor activity as the acidic lipid fraction. Specificity was confirmed by demonstrating that adhesion to the total lipids could be inhibited by pretreatment of the immobilized lipids with K88 fimbriae. Relative to K-12 (K88-), the K-12 (K88+) bacterial cells bound more avidly to galactosylceramide when the neutral lipids were separated on thin-layer chromatography plates. No adhesion to lipids in the acidic fraction separated on thin-layer plates was detected. Relative to adhesion of K-12 (K88-), adhesion of K-12 (K88+) to commercially available galactosylceramide immobilized in microtiter wells confirmed the results with the thin-layer plates. It can be concluded that 35-day-old piglet mucus contains both protein and glycolipid receptors specific for K88 fimbriae, the latter being galactosylceramide.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC280879 | PMC |
http://dx.doi.org/10.1128/iai.61.6.2526-2531.1993 | DOI Listing |
Front Microbiol
September 2024
Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States.
is an emerging foodborne pathogen. We previously reported that some avian Shiga toxin-producing strains exhibited higher or comparable cytotoxicity in Vero-d2EGFP cells with several enterohemorrhagic (EHEC) outbreak strains. To better understand the environmental persistence of this pathogen, comparative genomics and phenotypic assays were applied to assess adhesion capability, motility, and biofilm formation in .
View Article and Find Full Text PDFEnterotoxigenic (ETEC) is the major bacterial cause of diarrheal diseases in pigs, particularly at young ages, resulting in significant costs to swine farming. The pathogenicity of ETEC is largely dependent on the presence of fimbriae and the ability to produce toxins. Fimbriae are responsible for their initial adhesion to the intestinal epithelial cells, leading to the onset of infection.
View Article and Find Full Text PDFJ Agric Food Chem
April 2024
Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta T6G 2P5, Canada.
Enterotoxigenic (ETEC) K88 is the most common cause of diarrhea in neonatal and postweaning pigs. After adhering to small intestinal epithelial cells via glycoprotein receptor recognition, the pathogen can produce enterotoxins, impair intestinal integrity, trigger watery diarrhea, and induce inflammation via nuclear factor κB (NF-κB) and mitogen-activated protein kinase phosphatase (MAPK) pathways. Inhibiting ETEC K88 adhesion to cell surfaces by interfering with the receptor-fimbriae recognition provides a promising strategy to prevent the initiation and progression of infection.
View Article and Find Full Text PDFFront Microbiol
September 2023
Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States.
Shiga toxin-producing (STEC) consists of diverse strains differing in genetic make-up and virulence potential. To better understand the pathogenicity potential of STEC carried by the wildlife, three STEC and one strains isolated from wild birds near a major agricultural region in California were selected for comparative pathogenomic analyses. Three American crow () strains, RM9088, RM9513, and RM10410, belonging to phylogroup A with serotypes O109:H48, O9:H30, and O113:H4, respectively, and a red-winged blackbird () strain RM14516 in phylogroup D with serotype O17:H18, were examined.
View Article and Find Full Text PDFAntibiotics (Basel)
March 2023
Midwest Veterinary Services, Inc., Oakland, NE 68045, USA.
A total of 90 pigs, approximately one day of age, were used in a 42-day study to evaluate whether Endovac-Porci, a core antigen vaccine with an immunostimulant, provides piglets with broad-spectrum protection against the enteric and respiratory effects of Gram-negative bacteria. This study was a single-site, randomized, prospective, blinded, comparative placebo-controlled design. Individual pigs were randomly allocated to 1 of 2 treatments in a randomized design.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!