Activity of entopeduncular neurons was studied in chronic experiments on cats during performance of instrumental movement: pedal pressing and holding. One-hundred and twenty-four neurons were extracellularly investigated in intact animals and 81 neurons in cats treated with N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (5 mg/kg daily, intramuscularly for five days). The mean discharge frequency of nucleus entopeduncularis neurons recorded 48-72 h after the last MPTP injection increased from 12.9 +/- 1.5 to 22.1 +/- 1.4 impulses/s, but dropped to preinjection values within the next ten days. In intact animals and in MPTP-treated cats 23 and 17%, respectively, of neurons changed their activity before or during the movement performance. Along with nucleus entopeduncularis neurons that changed their activity simultaneously with instrumental movement performance, 16% of nucleus entopeduncularis nerve cells in intact cats and 12% in MPTP-treated cats responded 50-800 ms before the myogramme of working forepaw biceps was started. Excitatory responses associated with movement performance in MPTP-exposed cats were more pronounced, indicating enhancement of nucleus entopeduncularis neuronal activity in animals with injured nigrostriatal system. Since nucleus entopeduncularis neurons are inhibitory cells, the increase in their activity had to be accompanied by reinforcement of inhibitory influence on neurons in motor thalamic nuclei. In order to test this hypothesis, two groups of acute experiments were performed on ketamine-anaesthetized and myorelaxine-immobilized cats. Neuronal responses in ventral anterior and ventral lateral thalamic nuclei to nucleus entopeduncularis stimulation were investigated in normal and MPTP-treated animals in doses that were identical to those administered in chronic experiments. In intact cats, 28% of neurons responded to nucleus entopeduncularis stimulation with the latency shorter than 7 ms. In half of the inhibited neurons after the first phase of inhibition lasting 18 +/- 2 ms, the second inhibitory phase was recorded. The duration of the latter was 24 +/- 4 ms. Although in MPTP-treated cats the number of neurons inhibited by nucleus entopeduncularis stimulation was practically the same as in normal ones (24.5%), the first phase tended to be shorter, and a statistically significant increase of the second inhibitory phase duration (up to 50 +/- 11 ms) was found. It was suggested that changes in the inhibitory processes in motor thalamic neurons receiving afferents from nucleus entopeduncularis could be explained by GABAB-mediated hyperpolarization of the neuronal membrane, evoked by increasing pallidothalamic inhibitory influences.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0306-4522(93)90629-t | DOI Listing |
Curr Biol
August 2024
Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; UK Dementia Research Institute, Imperial College London, London SW7 2AZ, UK. Electronic address:
Rapid eye movement (REM) sleep has been hypothesized to promote emotional resilience, but any neuronal circuits mediating this have not been identified. We find that in mice, somatostatin (Som) neurons in the entopeduncular nucleus (EP)/internal globus pallidus are predominantly active during REM sleep. This unique REM activity is both necessary and sufficient for maintaining normal REM sleep.
View Article and Find Full Text PDFThe basal ganglia (BG) are an evolutionarily conserved and phylogenetically old set of sub-cortical nuclei that guide action selection, evaluation, and reinforcement. The entopeduncular nucleus (EP) is a major BG output nucleus that contains a population of GABA/glutamate cotransmitting neurons (EP ) that specifically target the lateral habenula (LHb) and whose function in behavior remains mysterious. Here we use a probabilistic switching task that requires an animal to maintain flexible relationships between action selection and evaluation to examine when and how GABA/glutamate cotransmitting neurons contribute to behavior.
View Article and Find Full Text PDFFront Cell Neurosci
April 2024
Department of Neurology, University of Rostock, Rostock, Germany.
Introduction: Deep brain stimulation (DBS) is a highly effective treatment option in Parkinson's disease. However, the underlying mechanisms of action, particularly effects on neuronal plasticity, remain enigmatic. Adult neurogenesis in the subventricular zone-olfactory bulb (SVZ-OB) axis and in the dentate gyrus (DG) has been linked to various non-motor symptoms in PD, e.
View Article and Find Full Text PDFJ Chem Neuroanat
July 2024
Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada; Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Movement Disorder Clinic, Division of Neurology, Department of Neurosciences, McGill University Health Centre, Montreal, QC, Canada. Electronic address:
L-3,4-dihydroxyphenylalanine (L-DOPA) is the treatment of choice for Parkinson's disease (PD) motor symptoms, but its chronic use is hindered by complications such as dyskinesia. Pre-clinical studies discovered that activation of metabotropic glutamate type 2 and 3 (mGlu) receptors alleviates L-DOPA-induced dyskinesia. To gain mechanistic insight into the anti-dyskinetic activity of mGlu activation, we performed autoradiographic binding with [H]-LY-341,495 in brain sections from L-DOPA-treated 6-hydroxydopamine (6-OHDA)-lesioned rats that developed mild or severe dyskinesia, as well as L-DOPA-untreated 6-OHDA-lesioned and sham-lesioned animals.
View Article and Find Full Text PDFDis Model Mech
May 2024
Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan.
Dystonia is thought to arise from abnormalities in the motor loop of the basal ganglia; however, there is an ongoing debate regarding cerebellar involvement. We adopted an established cerebellar dystonia mouse model by injecting ouabain to examine the contribution of the cerebellum. Initially, we examined whether the entopeduncular nucleus (EPN), substantia nigra pars reticulata (SNr), globus pallidus externus (GPe) and striatal neurons were activated in the model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!