CD18 designates a component of a leukocyte surface glycoprotein complex that mediates endothelial adherence. To determine whether interference with CD18-dependent leukocyte adhesion modifies reperfusion injury, we transplanted 16 canine left lungs after 4-hour preservation with modified Euro-Collins solution. Anti-canine CD18 monoclonal antibody (R15.7, 1 mg/kg, intravenously) was administered to eight lung recipients 5 minutes before reperfusion; eight control recipients were not treated. Ventilation was identical in donor-recipient pairs (tidal volume, 600 ml; fraction of inspired oxygen, 0.53; positive end-expiratory pressure, 5 cm H2O). Respiratory and inert gas exchange and hemodynamics were assessed in left lung donors one-half hour after right lung exclusion and in allograft recipients at 0.5, 1.5, 2.5, 3.5, and 6.0 hours after transplantation and right lung exclusion. Reperfusion injury was evident in both recipient groups at 6 hours after transplantation, but inert gas shunt was lower in monoclonal antibody-treated dogs (13% +/- 6%) than in controls (30% +/- 17%, p < 0.05); comparisons of arterial blood gases in monoclonal antibody recipients (PaO2, 209 +/- 83 mm Hg; PaCO2, 45 +/- 7 mm Hg) and controls (PaO2, 108 +/- 54, p < 0.05; PaCO2, 64 +/- 25, p < 0.05) at 6 hours indicated that monoclonal antibody administration distinctly improved respiratory gas transfer. Gravimetric lung water was less in monoclonal antibody recipients (5.78 +/- 1.01 ml/kg) than in controls (8.02 +/- 1.90 ml/kg, p < 0.05), but lung compliance at 6 hours was equally reduced in monoclonal antibody recipients (40 +/- 9 ml/cm H2O) and in controls (39 +/- 7 ml/cm H2O, p = not significant). Pulmonary vascular resistance doubled immediately after transplantation but was identical in monoclonal antibody-treated dogs (890 +/- 168 dynes.sec.cm-5) and in controls (874 +/- 162 dynes.sec.cm-5, p = not significant) at 6 hours. We conclude that inhibition of CD18-dependent leukocyte function attenuates the development of both shunt and abnormal respiratory gas exchange in lung reperfusion injury. Significant physiologic abnormalities occurred despite R15.7 treatment and may represent inadequate preservation or the effect of CD18-independent adhesion mechanisms.

Download full-text PDF

Source

Publication Analysis

Top Keywords

monoclonal antibody
20
reperfusion injury
16
+/-
12
antibody recipients
12
lung
8
lung reperfusion
8
cd18-dependent leukocyte
8
inert gas
8
gas exchange
8
lung exclusion
8

Similar Publications

The development of stable biopharmaceutical formulations, such as monoclonal antibodies, poses a great challenge in the pharmaceutical industry. This study investigated the stabilizing effect of 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) in liquid and solid formulations of infliximab during processing and storage. The solid formulation was produced by a scaled-up high-speed electrospinning method, resulting in a product suitable for reconstitution with excellent dissolution properties.

View Article and Find Full Text PDF

Circulating sexual stages of ) can be transmitted from humans to mosquitoes, thereby furthering the spread of malaria in the population. It is well established that antibodies can efficiently block parasite transmission. In search for naturally acquired antibodies targets on sexual stages, we established an efficient method for target-agnostic single B cell activation followed by high-throughput selection of human monoclonal antibodies (mAbs) reactive to sexual stages of in the form of gametes and gametocyte extracts.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is a chronic, autoimmune inflammatory disease with a multisystem manifestation and a variety of clinical symptoms. Over the last decades, the prognosis and life expectancy of patients with SLE improved significantly due to the implementation of corticosteroids combined with immunosuppressive agents. Nevertheless, the use of these medications is often associated with the occurrence of serious side effects and additional deterioration of organ function.

View Article and Find Full Text PDF

Inhibition of aortic CX3CR1+ macrophages mitigates thoracic aortic aneurysm progression in Marfan syndrome in mice.

J Clin Invest

January 2025

Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.

The pathogenesis of thoracic aortic aneurysm (TAA) in Marfan syndrome (MFS) is generally attributed to vascular smooth muscle cell (VSMC) pathologies. However, the role of immune cell-mediated inflammation remains elusive. Single-cell RNA sequencing identified a subset of CX3CR1+ macrophages mainly located in the intima in the aortic roots and ascending aortas of Fbn1C1041G/+ mice, further validated in MFS patients.

View Article and Find Full Text PDF

Autoimmune hepatitis (AIH) is a rare chronic inflammatory liver disease characterized by the presence of autoantibodies, including those targeting O-phosphoseryl-tRNA:selenocysteine-tRNA synthase (SepSecS), also known as soluble liver antigen (SLA). Anti-SepSecS antibodies have been associated with a more severe phenotype, suggesting a key role for the SepSecS autoantigen in AIH. To analyze the immune response to SepSecS in patients with AIH at the clonal level, we combined sensitive high-throughput screening assays with the isolation of monoclonal antibodies (mAbs) and T cell clones.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!