Astrocyte-regulated synaptogenesis: an in vitro ultrastructural study.

Neurosci Lett

Laboratoire de Biologie Cellulaire, Faculté de Médecine, Marseille, France.

Published: February 1993

AI Article Synopsis

Article Abstract

Striatal neurons from E15 rat embryos were dissociated, plated at low cell density on polyornithine or on astrocyte monolayers derived from the striatum (homotopic) or mesencephalon (heterotopic), and cultured in a chemically defined medium. Dendrites developing in homotopic co-cultures could reach a state of maturation allowing the establishment of synapses with axons from mesencephalic explants. This culture system thus partially reproduces the in vivo conditions in which striatal neurons developing in an homotopic glial environment can serve as synaptic targets for afferent mesencephalic axons.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0304-3940(93)90114-zDOI Listing

Publication Analysis

Top Keywords

striatal neurons
8
developing homotopic
8
astrocyte-regulated synaptogenesis
4
synaptogenesis vitro
4
vitro ultrastructural
4
ultrastructural study
4
study striatal
4
neurons e15
4
e15 rat
4
rat embryos
4

Similar Publications

Hinokinin Decreases Methamphetamine-Induced Hyperlocomotion via the Regulatory Effects on Dopamine Levels.

ACS Chem Neurosci

January 2025

College of Pharmacy, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea.

The global abuse of stimulant methamphetamine (METH) imposes a significant social burden. Despite this, effective therapeutic interventions for mitigating the harmful effects associated with METH-induced central nervous system (CNS) stimulation remain elusive. (hinoki), containing hinokinin as its active constituent, has been identified to exhibit CNS depressant properties.

View Article and Find Full Text PDF

Dopamine critically regulates neuronal excitability and promotes synaptic plasticity in the striatum, thereby shaping network connectivity and influencing behavior. These functions establish dopamine as a key neuromodulator, whose release properties have been well-studied in rodents but remain understudied in nonhuman primates. This study aims to close this gap by investigating the properties of dopamine release in macaque striatum and comparing/contrasting them to better-characterized mouse striatum, using ex vivo brain slices from male and female animals.

View Article and Find Full Text PDF

Neuroanatomical distribution of endogenous huntingtin and its immunohistochemical relationships with STB/HAP1 in the adult mouse brain and spinal cord.

Neurosci Res

January 2025

Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan; School of Human Care Studies, Nagoya University of Arts and Sciences, 57 Takenoyama, Iwasaki-cho, Nishin city, Aichi 470-0196, Japan. Electronic address:

Huntingtin-associated protein 1 (HAP1) is an essential constituent of the stigmoid body (STB) and is known as a neuroprotective interactor with causal agents for several neurodegenerative disorders, including huntingtin (HTT) in Huntington's disease. Previous in vitro studies showed that compared to normal HTT, STB/HAP1 exhibited a higher binding affinity for mutant HTT. However, the detailed in vivo relationships of STB/HAP1 with endogenous HTT have not been clarified yet.

View Article and Find Full Text PDF

Mu opioid receptors expressed in striatal D2 medium spiny neurons have divergent contributions to cocaine and morphine reward.

Neuroscience

January 2025

Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA; Waggoner Center for Alcohol & Addiction Research, The University of Texas at Austin, Austin, TX, USA; Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA. Electronic address:

While our understanding of the neurobiological mechanisms underlying cocaine and opiate reward has historically been dopamine-focused, evidence from genetic and pharmacological approaches indicates that µ-opioid receptors (MORs) in the striatum are important contributors. Within the striatum, MORs are expressed in both dopamine D1-receptor and D2-receptor expressing GABAergic medium spiny neurons (MSNs), as well as in interneurons and various afferents. Thus, it remains unclear how these distinct MOR populations regulate drug reward.

View Article and Find Full Text PDF

Neuromodulatory signaling is poised to serve as a neural mechanism for gain control, acting as a crucial tuning factor to influence neuronal activity by dynamically shaping excitatory and inhibitory fast neurotransmission. The endocannabinoid (eCB) signaling system, the most widely expressed neuromodulatory system in the mammalian brain, is known to filter excitatory and inhibitory inputs through retrograde, pre-synaptic action. However, whether eCBs exert retrograde gain control to ultimately facilitate reward-seeking behaviors in freely moving mammals is not established.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!